Files in this item
Generating the full transformation semigroup using order preserving mappings
Item metadata
dc.contributor.author | Higgins, PM | |
dc.contributor.author | Mitchell, James David | |
dc.contributor.author | Ruskuc, Nikola | |
dc.date.accessioned | 2010-12-01T10:42:48Z | |
dc.date.available | 2010-12-01T10:42:48Z | |
dc.date.issued | 2003-09 | |
dc.identifier.citation | Higgins , PM , Mitchell , J D & Ruskuc , N 2003 , ' Generating the full transformation semigroup using order preserving mappings ' , Glasgow Mathematical Journal , vol. 45 , no. 3 , pp. 557-566 . https://doi.org/10.1017/S0017089503001460 | en |
dc.identifier.issn | 0017-0895 | |
dc.identifier.other | PURE: 230874 | |
dc.identifier.other | PURE UUID: 83e2237f-6c79-405f-a985-15f1d63f6b7b | |
dc.identifier.other | WOS: 000185755000013 | |
dc.identifier.other | Scopus: 0141640991 | |
dc.identifier.other | ORCID: /0000-0002-5489-1617/work/73700828 | |
dc.identifier.other | ORCID: /0000-0003-2415-9334/work/73702081 | |
dc.identifier.uri | http://hdl.handle.net/10023/1553 | |
dc.description.abstract | For a linearly ordered set X we consider the relative rank of the semigroup of all order preserving mappings O-X on X modulo the full transformation semigroup Ex. In other words, we ask what is the smallest cardinality of a set A of mappings such that <O-X boolean OR A> = T-X. When X is countably infinite or well-ordered (of arbitrary cardinality) we show that this number is one, while when X = R (the set of real numbers) it is uncountable. | |
dc.format.extent | 10 | |
dc.language.iso | eng | |
dc.relation.ispartof | Glasgow Mathematical Journal | en |
dc.rights | (c)2003 Glasgow Mathematical Journal Trust | en |
dc.subject | Ranks | en |
dc.subject | QA Mathematics | en |
dc.subject.lcc | QA | en |
dc.title | Generating the full transformation semigroup using order preserving mappings | en |
dc.type | Journal article | en |
dc.description.version | Publisher PDF | en |
dc.contributor.institution | University of St Andrews. School of Mathematics and Statistics | en |
dc.contributor.institution | University of St Andrews. Pure Mathematics | en |
dc.contributor.institution | University of St Andrews. Centre for Interdisciplinary Research in Computational Algebra | en |
dc.identifier.doi | https://doi.org/10.1017/S0017089503001460 | |
dc.description.status | Peer reviewed | en |
dc.identifier.url | http://www.scopus.com/inward/record.url?scp=0141640991&partnerID=8YFLogxK | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.