St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The rhizoferrin biosynthetic gene in the fungal pathogen Rhizopus delemar is a novel member of the NIS gene family

Thumbnail
View/Open
Carroll_2017_IJBCB_Rhizopusdelemar_AAM.pdf (1.252Mb)
Date
08/2017
Author
Carroll, Cassandra S.
Grieve, Clark L.
Murugathasan, Indu
Bennet, Andrew J.
Melo Czekster, Clarissa
Lui, Huanting
Naismith, James
Moore, Margo M.
Keywords
Mucormycosis
Rhizopus delemar
Siderophore biosynthesis
NRPS-independent siderophore (NIS)
QD Chemistry
QH301 Biology
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Iron is essential for growth and in low iron environments such as serum many bacteria and fungi secrete ferric iron-chelating molecules called siderophores. All fungi produce hydroxamate siderophores with the exception of Mucorales fungi, which secrete rhizoferrin, a polycarboxylate siderophore. Here we investigated the biosynthesis of rhizoferrin by the opportunistic human pathogen, Rhizopus delemar. We searched the genome of R. delemar 99–880 for a homologue of the bacterial NRPS-independent siderophore (NIS) protein, SfnaD that is involved in biosynthesis of staphyloferrin A in Staphylococcus aureus. A protein was identified in R. delemar with 22% identity and 37% similarity with SfnaD, containing an N-terminal IucA/IucC family domain, and a C-terminal conserved ferric iron reductase FhuF-like transporter domain. Expression of the putative fungal rhizoferrin synthetase (rfs) gene was repressed by iron. The rfs gene was cloned and expressed in E.coli and siderophore biosynthesis from citrate and diaminobutane was confirmed using high resolution LC–MS. Substrate specificity was investigated showing that Rfs produced AMP when oxaloacetic acid, tricarballylic acid, ornithine, hydroxylamine, diaminopentane and diaminopropane were employed as substrates. Based on the production of AMP and the presence of a mono-substituted rhizoferrin, we suggest that Rfs is a member of the superfamily of adenylating enzymes. We used site-directed mutagenesis to mutate selected conserved residues predicted to be in the Rfs active site. These studies revealed that H484 is essential for Rfs activity and L544 may play a role in amine recognition by the enzyme. This study on Rfs is the first characterization of a fungal NIS enzyme. Future work will determine if rhizoferrin biosynthesis is required for virulence in Mucorales fungi.
Citation
Carroll , C S , Grieve , C L , Murugathasan , I , Bennet , A J , Melo Czekster , C , Lui , H , Naismith , J & Moore , M M 2017 , ' The rhizoferrin biosynthetic gene in the fungal pathogen Rhizopus delemar is a novel member of the NIS gene family ' , International Journal of Biochemistry and Cell Biology , vol. 89 , pp. 136-146 . https://doi.org/10.1016/j.biocel.2017.06.005
Publication
International Journal of Biochemistry and Cell Biology
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.biocel.2017.06.005
ISSN
1357-2725
Type
Journal article
Rights
© 2017 Elsevier Ltd. All rights reserved. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1016/j.biocel.2017.06.005
Description
This work was supported by the Natural Sciences and Engineering Research Council of Canada award to MM (grant number 611181). C. Carroll thanks Simon Fraser University for a travel and research award.
Collections
  • University of St Andrews Research
URL
http://www.sciencedirect.com/science/article/pii/S1357272517301358#appd002
URI
http://hdl.handle.net/10023/13873

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter