St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Intrinsic dead layer effects in relaxed epitaxial BaTiO3 thin film grown by pulsed laser deposition

Thumbnail
View/Open
Scott_2017_M_D_DeadLayerEffects_AAM.pdf (1.994Mb)
Date
15/05/2017
Author
Gagou, Y.
Belhadi, J.
Asbani, B.
El Marssi, M.
Dellis, J-L
Yuzyuk, Yu. I.
Raevski, I. P.
Scott, J. F
Keywords
Dead layer
Ferroelectric
BaTiO3
Epitaxial growth
Pulsed laser deposition
QC Physics
NDAS
Metadata
Show full item record
Abstract
Epitaxial BaTiO3 (BT) thin film of about 400 nm thickness was grown on LaSr0.5Co0.5O3 (LSCO) coated (001)MgO using pulsed laser deposition. Ferroelectric properties of the BT thin film in Pt/BT/LSCO/MgO heterostructure capacitor configuration were investigated. Dynamic P-E hysteresis loops at room temperature showed ferroelectric behavior with Ps = 32 μC/cm2, Pr = 14 μC/cm2 and EC = 65 kV/cm. Static C-V measurements confirmed reversible switching with a coercive field EC = 15 kV/cm. Basing on a model taking into account an interface dead-layer we show that the capacitance-voltage “butterfly” loops imply only 25% switching of dipoles that inferred from dynamic polarization-field loops (~ 4 and ~ 16 kV/cm, respectively). Dielectric permittivity as a function of temperature revealed a first-order ferroelectric-to-paraelectric (FE-PE) phase transition in the BT film characterized by a maximum at TC ~ 130 °C. The very large (~ 126 K at 1 kHz) difference between TC and the extrapolated Curie-Weiss temperature T0 is attributed to the dead-layer effects.
Citation
Gagou , Y , Belhadi , J , Asbani , B , El Marssi , M , Dellis , J-L , Yuzyuk , Y I , Raevski , I P & Scott , J F 2017 , ' Intrinsic dead layer effects in relaxed epitaxial BaTiO 3 thin film grown by pulsed laser deposition ' , Materials & Design , vol. 122 , pp. 157-163 . https://doi.org/10.1016/j.matdes.2017.03.001
Publication
Materials & Design
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.matdes.2017.03.001
ISSN
0264-1275
Type
Journal article
Rights
© 2017 Elsevier Ltd. All rights reserved. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1016/j.matdes.2017.03.001
Description
MEM acknowledges a support from the Region of Haut de France and IPR the Ministry of Education and Science of the Russian Federation (research project 3.1649.2017/PP).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/12843

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter