Show simple item record

Files in this item

Thumbnail
Thumbnail

Item metadata

dc.contributor.authorHong, Zijian
dc.contributor.authorDamodaran, Anoop
dc.contributor.authorXue, Fei
dc.contributor.authorHsu, Shang-Lin
dc.contributor.authorBritson, Jason
dc.contributor.authorYadav, Ajay
dc.contributor.authorNelson, Christopher
dc.contributor.authorWang, Jianjun
dc.contributor.authorScott, James Floyd
dc.contributor.authorMartin, Lane
dc.contributor.authorRamesh, Ramamoorthy
dc.contributor.authorChen, Long-Qing
dc.date.accessioned2018-02-28T00:33:05Z
dc.date.available2018-02-28T00:33:05Z
dc.date.issued2017-04-12
dc.identifier249251978
dc.identifier1925d630-8ce7-4053-b299-3a310d541e93
dc.identifier85017567004
dc.identifier000399354500021
dc.identifier.citationHong , Z , Damodaran , A , Xue , F , Hsu , S-L , Britson , J , Yadav , A , Nelson , C , Wang , J , Scott , J F , Martin , L , Ramesh , R & Chen , L-Q 2017 , ' Stability of polar vortex lattice in ferroelectric superlattices ' , Nano Letters , vol. 17 , no. 4 , pp. 2246–2252 . https://doi.org/10.1021/acs.nanolett.6b04875en
dc.identifier.issn1530-6984
dc.identifier.urihttps://hdl.handle.net/10023/12814
dc.descriptionThe work is supported by U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award FG02-07ER46417 (L.-Q.C., F.X., and J.B.). Z.H. acknowledges the support by NSF-MRSEC Grant DMR-1420620 and NSF-MWN Grant DMR-1210588. A.R.D. acknowledges support from the Army Research Office under Grant W911NF-14-1-0104. L.W.M. acknowledges support from the National Science Foundation under Grant DMR-1451219. A.K.Y., C.T.N., and R.R. acknowledge support from the Office of Basic Energy Sciences, U.S. Department of Energy under contract no. DE-AC02-05CH11231. L.W.M. and R.R. acknowledge support from the Gordon and Betty Moore Foundation’s EPiQS Initiative, Grant GBMF5307.en
dc.description.abstractA novel mesoscale state comprising of an ordered polar vortex lattice has been demonstrated in ferroelectric superlattices of PbTiO3/SrTiO3. Here, we employ phase-field simulations, analytical theory, and experimental observations to evaluate thermodynamic conditions and geometric length scales that are critical for the formation of such exotic vortex states. We show that the stability of these vortex lattices involves an intimate competition between long-range electrostatic, long-range elastic, and short-range polarization gradient-related interactions leading to both an upper and a lower bound to the length scale at which these states can be observed. We found that the critical length is related to the intrinsic domain wall width, which could serve as a simple intuitive design rule for the discovery of novel ultrafine topological structures in ferroic systems.
dc.format.extent1302002
dc.format.extent1859234
dc.language.isoeng
dc.relation.ispartofNano Lettersen
dc.subjectFerroelectric superlatticesen
dc.subjectUltrafine polar vortexen
dc.subjectGeometric length scaleen
dc.subjectPhase-field simulationsen
dc.subjectTopical structures by designen
dc.subjectQC Physicsen
dc.subjectT Technologyen
dc.subjectNDASen
dc.subject.lccQCen
dc.subject.lccTen
dc.titleStability of polar vortex lattice in ferroelectric superlatticesen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doi10.1021/acs.nanolett.6b04875
dc.description.statusPeer revieweden
dc.date.embargoedUntil2018-02-27


This item appears in the following Collection(s)

Show simple item record