Files in this item
The infinite simple group V of Richard J. Thompson : presentations by permutations
Item metadata
dc.contributor.author | Bleak, Collin | |
dc.contributor.author | Quick, Martyn | |
dc.date.accessioned | 2017-12-08T12:30:08Z | |
dc.date.available | 2017-12-08T12:30:08Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Bleak , C & Quick , M 2017 , ' The infinite simple group V of Richard J. Thompson : presentations by permutations ' , Groups, Geometry, and Dynamics , vol. 11 , no. 4 , pp. 1401-1436 . https://doi.org/10.4171/GGD/433 | en |
dc.identifier.issn | 1661-7207 | |
dc.identifier.other | PURE: 229627034 | |
dc.identifier.other | PURE UUID: e675f4a8-7e08-492d-8123-38aa4381999b | |
dc.identifier.other | WOS: 000423287400010 | |
dc.identifier.other | WOS: 000423287400010 | |
dc.identifier.other | Scopus: 85035076680 | |
dc.identifier.other | ORCID: /0000-0002-5227-2994/work/58054911 | |
dc.identifier.other | ORCID: /0000-0001-5790-1940/work/73701273 | |
dc.identifier.uri | http://hdl.handle.net/10023/12296 | |
dc.description.abstract | We show that one can naturally describe elements of R. Thompson's finitely presented infinite simple group V, known by Thompson to have a presentation with four generators and fourteen relations, as products of permutations analogous to transpositions. This perspective provides an intuitive explanation towards the simplicity of V and also perhaps indicates a reason as to why it was one of the first discovered infinite finitely presented simple groups: it is (in some basic sense) a relative of the finite alternating groups. We find a natural infinite presentation for V as a group generated by these "transpositions," which presentation bears comparison with Dehornoy's infinite presentation and which enables us to develop two small presentations for V: a human-interpretable presentation with three generators and eight relations, and a Tietze-derived presentation with two generators and seven relations. | |
dc.format.extent | 36 | |
dc.language.iso | eng | |
dc.relation.ispartof | Groups, Geometry, and Dynamics | en |
dc.rights | © 2017, EMS Publishing House. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.4171/GGD/433 | en |
dc.subject | Thompson's groups | en |
dc.subject | Simple groups | en |
dc.subject | Presentations | en |
dc.subject | Generators and relations | en |
dc.subject | Permutations | en |
dc.subject | Transpositions | en |
dc.subject | QA Mathematics | en |
dc.subject | T-NDAS | en |
dc.subject | BDC | en |
dc.subject | R2C | en |
dc.subject.lcc | QA | en |
dc.title | The infinite simple group V of Richard J. Thompson : presentations by permutations | en |
dc.type | Journal article | en |
dc.contributor.sponsor | EPSRC | en |
dc.description.version | Postprint | en |
dc.contributor.institution | University of St Andrews. Pure Mathematics | en |
dc.contributor.institution | University of St Andrews. Centre for Interdisciplinary Research in Computational Algebra | en |
dc.identifier.doi | https://doi.org/10.4171/GGD/433 | |
dc.description.status | Peer reviewed | en |
dc.date.embargoedUntil | 2017-12-07 | |
dc.identifier.url | http://arxiv.org/abs/1511.02123v1 | en |
dc.identifier.grantnumber | EP/H011978/1 | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.