Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorNeagu, Dragos
dc.contributor.authorPapaioannou, Evangelos I.
dc.contributor.authorRamli, Wan K. W.
dc.contributor.authorMiller, David N.
dc.contributor.authorMurdoch, Billy J.
dc.contributor.authorMénard, Hervé
dc.contributor.authorUmar, Ahmed
dc.contributor.authorBarlow, Anders J.
dc.contributor.authorCumpson, Peter J.
dc.contributor.authorIrvine, John T. S.
dc.contributor.authorMetcalfe, Ian S.
dc.date.accessioned2017-11-30T09:30:08Z
dc.date.available2017-11-30T09:30:08Z
dc.date.issued2017-11-30
dc.identifier251475815
dc.identifieraec68a0a-7b3f-43c9-9c59-5b99c90d76fb
dc.identifier85036528103
dc.identifier000416895200002
dc.identifier.citationNeagu , D , Papaioannou , E I , Ramli , W K W , Miller , D N , Murdoch , B J , Ménard , H , Umar , A , Barlow , A J , Cumpson , P J , Irvine , J T S & Metcalfe , I S 2017 , ' Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticles ' , Nature Communications , vol. 8 , 1855 . https://doi.org/10.1038/s41467-017-01880-yen
dc.identifier.issn2041-1723
dc.identifier.otherORCID: /0000-0002-8394-3359/work/68280851
dc.identifier.urihttps://hdl.handle.net/10023/12194
dc.descriptionThe research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement Number 320725 and from the EPSRC via the research grants EP/J016454/1, EP/G01244X/1, EP/K015540/1, EP/J018414/1, as well as EPSRC Capital for Great Technologies grants EP/L017008/1 and EP/K022679/1, and a Royal Society Wolfson Merit Award (WRMA 2012/R2).en
dc.description.abstractMetal nanoparticles prepared by exsolution at the surface of perovskite oxides have been recently shown to enable new dimensions in catalysis and energy conversion and storage technologies owing to their socketed, well-anchored structure. Here we show that contrary to general belief, exsolved particles do not necessarily re-dissolve back into the underlying perovskite upon oxidation. Instead, they may remain pinned to their initial locations, allowing one to subject them to further chemical transformations to alter their composition, structure and functionality dramatically, while preserving their initial spatial arrangement. We refer to this concept as chemistry at a point and illustrate it by tracking individual nanoparticles throughout various chemical transformations. We demonstrate its remarkable practical utility by preparing a nanostructured earth abundant metal catalyst which rivals platinum on a weight basis over hundreds of hours of operation. Our concept enables the design of compositionally diverse confined oxide particles with superior stability and catalytic reactivity.
dc.format.extent8
dc.format.extent2043402
dc.language.isoeng
dc.relation.ispartofNature Communicationsen
dc.subjectQD Chemistryen
dc.subjectDASen
dc.subjectBDCen
dc.subjectR2Cen
dc.subject.lccQDen
dc.titleDemonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticlesen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorThe Royal Societyen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.identifier.doihttps://doi.org/10.1038/s41467-017-01880-y
dc.description.statusPeer revieweden
dc.identifier.urlhttps://www.nature.com/articles/s41467-017-01880-y#Sec14en
dc.identifier.grantnumberEP/K039210/1en
dc.identifier.grantnumberEP/J016454/1en
dc.identifier.grantnumberEP/G01244X/1en
dc.identifier.grantnumberEP/K015540/1en
dc.identifier.grantnumberep/l017008/1en
dc.identifier.grantnumberWRMA 2012/R2en


This item appears in the following Collection(s)

Show simple item record