Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticles
Date
30/11/2017Author
Grant ID
EP/K039210/1
EP/J016454/1
EP/G01244X/1
EP/K015540/1
ep/l017008/1
WRMA 2012/R2
Metadata
Show full item recordAbstract
Metal nanoparticles prepared by exsolution at the surface of perovskite oxides have been recently shown to enable new dimensions in catalysis and energy conversion and storage technologies owing to their socketed, well-anchored structure. Here we show that contrary to general belief, exsolved particles do not necessarily re-dissolve back into the underlying perovskite upon oxidation. Instead, they may remain pinned to their initial locations, allowing one to subject them to further chemical transformations to alter their composition, structure and functionality dramatically, while preserving their initial spatial arrangement. We refer to this concept as chemistry at a point and illustrate it by tracking individual nanoparticles throughout various chemical transformations. We demonstrate its remarkable practical utility by preparing a nanostructured earth abundant metal catalyst which rivals platinum on a weight basis over hundreds of hours of operation. Our concept enables the design of compositionally diverse confined oxide particles with superior stability and catalytic reactivity.
Citation
Neagu , D , Papaioannou , E I , Ramli , W K W , Miller , D N , Murdoch , B J , Ménard , H , Umar , A , Barlow , A J , Cumpson , P J , Irvine , J T S & Metcalfe , I S 2017 , ' Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticles ' , Nature Communications , vol. 8 , 1855 . https://doi.org/10.1038/s41467-017-01880-y
Publication
Nature Communications
Status
Peer reviewed
ISSN
2041-1723Type
Journal article
Rights
Copyright 2017 the authors. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Description
The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement Number 320725 and from the EPSRC via the research grants EP/J016454/1, EP/G01244X/1, EP/K015540/1, EP/J018414/1, as well as EPSRC Capital for Great Technologies grants EP/L017008/1 and EP/K022679/1, and a Royal Society Wolfson Merit Award (WRMA 2012/R2).Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Related items
Showing items related by title, author, creator and subject.
-
Unusual intermolecular “through-space” J couplings in P–Se heterocycles
Sanz Camacho, Paula; Athukorala Arachchige, Kasun Sankalpa; Slawin, Alexandra Martha Zoya; Green, Timothy F.G.; Yates, Jonathan R.; Dawson, Daniel McLean; Woollins, J Derek; Ashbrook, Sharon Elizabeth (2015-05-20) - Journal articleSolid-state NMR spectra of new P–Se heterocycles based on peri-substituted naphthalene motifs show the presence of unusual J couplings between Se and P. These couplings are between atoms in adjacent molecules and occur ... -
Controlling the electromagnetic proximity effect by tuning the mixing between superconducting and ferromagnetic order
Stewart, R.; Flokstra, M. G.; Rogers, M.; Satchell, N.; Burnell, G.; Miller, D.; Luetkens, H.; Prokscha, T.; Suter, A.; Morenzoni, E.; Lee, S. L. (2019-07-12) - Journal articleWe present low-energy muon-spin rotation measurements on Cu/Nb/AlOx/Co thin films that probe the newly described electromagnetic (EM) proximity effect. By varying the thickness of the insulating AlOx layer we control the ... -
High-resolution solid-state 13C NMR spectroscopy of the paramagnetic metal-organic frameworks, STAM-1 and HKUST-1
Dawson, Daniel M.; Jamieson, Lauren E.; Mohideen, M. Infas H.; McKinlay, Alistair C.; Smellie, Iain A.; Cadou, Romain; Keddie, Neil S.; Morris, Russell E.; Ashbrook, Sharon E. (2012-11) - Journal articleSolid-state C-13 magic-angle spinning (MAS) NMR spectroscopy is used to investigate the structure of the Cu(II)-based metal-organic frameworks (MOFs), HKUST-1 and STAM-1, and the structural changes occurring within these ...