St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticles

Thumbnail
View/Open
Irvine_2017_NatComm_DemoChemAtPoint_CCBY_VoR.pdf (1.948Mb)
Date
30/11/2017
Author
Neagu, Dragos
Papaioannou, Evangelos I.
Ramli, Wan K. W.
Miller, David N.
Murdoch, Billy J.
Ménard, Hervé
Umar, Ahmed
Barlow, Anders J.
Cumpson, Peter J.
Irvine, John T. S.
Metcalfe, Ian S.
Funder
EPSRC
EPSRC
EPSRC
EPSRC
EPSRC
The Royal Society
Grant ID
EP/K039210/1
EP/J016454/1
EP/G01244X/1
EP/K015540/1
ep/l017008/1
WRMA 2012/R2
Keywords
QD Chemistry
DAS
BDC
R2C
Metadata
Show full item record
Abstract
Metal nanoparticles prepared by exsolution at the surface of perovskite oxides have been recently shown to enable new dimensions in catalysis and energy conversion and storage technologies owing to their socketed, well-anchored structure. Here we show that contrary to general belief, exsolved particles do not necessarily re-dissolve back into the underlying perovskite upon oxidation. Instead, they may remain pinned to their initial locations, allowing one to subject them to further chemical transformations to alter their composition, structure and functionality dramatically, while preserving their initial spatial arrangement. We refer to this concept as chemistry at a point and illustrate it by tracking individual nanoparticles throughout various chemical transformations. We demonstrate its remarkable practical utility by preparing a nanostructured earth abundant metal catalyst which rivals platinum on a weight basis over hundreds of hours of operation. Our concept enables the design of compositionally diverse confined oxide particles with superior stability and catalytic reactivity.
Citation
Neagu , D , Papaioannou , E I , Ramli , W K W , Miller , D N , Murdoch , B J , Ménard , H , Umar , A , Barlow , A J , Cumpson , P J , Irvine , J T S & Metcalfe , I S 2017 , ' Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticles ' , Nature Communications , vol. 8 , 1855 . https://doi.org/10.1038/s41467-017-01880-y
Publication
Nature Communications
Status
Peer reviewed
DOI
https://doi.org/10.1038/s41467-017-01880-y
ISSN
2041-1723
Type
Journal article
Rights
Copyright 2017 the authors. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Description
The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement Number 320725 and from the EPSRC via the research grants EP/J016454/1, EP/G01244X/1, EP/K015540/1, EP/J018414/1, as well as EPSRC Capital for Great Technologies grants EP/L017008/1 and EP/K022679/1, and a Royal Society Wolfson Merit Award (WRMA 2012/R2).
Collections
  • University of St Andrews Research
URL
https://www.nature.com/articles/s41467-017-01880-y#Sec14
URI
http://hdl.handle.net/10023/12194

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Related items

Showing items related by title, author, creator and subject.

  • Unusual intermolecular “through-space” J couplings in P–Se heterocycles 

    Sanz Camacho, Paula; Athukorala Arachchige, Kasun Sankalpa; Slawin, Alexandra Martha Zoya; Green, Timothy F.G.; Yates, Jonathan R.; Dawson, Daniel McLean; Woollins, J Derek; Ashbrook, Sharon Elizabeth (2015-05-20) - Journal article
    Solid-state NMR spectra of new P–Se heterocycles based on peri-substituted naphthalene motifs show the presence of unusual J couplings between Se and P. These couplings are between atoms in adjacent molecules and occur ...
  • Controlling the electromagnetic proximity effect by tuning the mixing between superconducting and ferromagnetic order 

    Stewart, R.; Flokstra, M. G.; Rogers, M.; Satchell, N.; Burnell, G.; Miller, D.; Luetkens, H.; Prokscha, T.; Suter, A.; Morenzoni, E.; Lee, S. L. (2019-07-12) - Journal article
    We present low-energy muon-spin rotation measurements on Cu/Nb/AlOx/Co thin films that probe the newly described electromagnetic (EM) proximity effect. By varying the thickness of the insulating AlOx layer we control the ...
  • High-resolution solid-state 13C NMR spectroscopy of the paramagnetic metal-organic frameworks, STAM-1 and HKUST-1 

    Dawson, Daniel M.; Jamieson, Lauren E.; Mohideen, M. Infas H.; McKinlay, Alistair C.; Smellie, Iain A.; Cadou, Romain; Keddie, Neil S.; Morris, Russell E.; Ashbrook, Sharon E. (2012-11) - Journal article
    Solid-state C-13 magic-angle spinning (MAS) NMR spectroscopy is used to investigate the structure of the Cu(II)-based metal-organic frameworks (MOFs), HKUST-1 and STAM-1, and the structural changes occurring within these ...
Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter