Show simple item record

Files in this item

Thumbnail
Thumbnail

Item metadata

dc.contributor.advisorSmith, Andrew David
dc.contributor.authorYeh, Pei-Pei
dc.coverage.spatial265 p.en_US
dc.date.accessioned2017-10-31T14:06:09Z
dc.date.available2017-10-31T14:06:09Z
dc.date.issued2015-07
dc.identifier.urihttps://hdl.handle.net/10023/11961
dc.description.abstractChapter 1 describes an introduction to the area of organocatalysis and delineates previous work within the Smith group on the use of isothioureas in asymmetric catalysis. Chapter 2 showcases a one-pot isothiourea-catalysed Michael addition-lactamisation using cheap and readily available starting materials (carboxylic acids) and easily prepared α,β-unsaturated ketimines via an ammonium enolate intermediate to give dihydropyridinones with high diastereo- and enantioselectivity (typically >90:10 dr, up to 99% ee). The resultant dihydropyridinones can be successfully derivatised into multiple products without erosion of stereointegrity. In chapter 3 the same concept has also been applied to the synthesis of planar molecules by using (phenylthio)acetic acid as a suiTable ammonium enolate precursor. Generation of an ammonium enolate using an achiral isothiourea (DHPB) and reaction with α,β-unsaturated trifluoromethyl ketones allows an isothiourea-mediated Michael addition / lactonisation / thiophenol elimination cascade reaction for the formation of 4,6-disubstituted and 3,4,6-trisubstituted 2-pyrones in good to excellent yields (61-99%). Notably this method allows low catalyst loadings of 1% to be used. The methodology has successfully been applied to the synthesis of a COX-2 inhibitor and a wide range of derivatisations has been performed, giving valuable aromatic and heteroaromatic products containing the trifluoromethyl motif. In chapter 4 a novel N- to C-sulfonyl migration of dihydropyridinones via photoisomerisation is investigated. The scope and limitations of this process is investigated and the process is shown to proceed without compromising the diastereo- or enantiomeric purity of the starting material, giving 5-sulfonyl products in good to excellent yields (67-95%). Mechanistic crossover has indicated that this migration includes an intermolecular step, while EPR studies provided evidence of its radical nature.en_US
dc.language.isoenen_US
dc.publisherUniversity of St Andrews
dc.subject.lccQD400.Y4
dc.subject.lcshCatalysisen
dc.subject.lcshHeterocyclic chemistryen
dc.subject.lcshPhotoisomerizationen
dc.titleIsothioureas in organocatalysis : synthesis of heterocycles and their N- to C-sulfonyl photoisomerisationen_US
dc.typeThesisen_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US


This item appears in the following Collection(s)

Show simple item record