St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Isothioureas in organocatalysis : synthesis of heterocycles and their N- to C-sulfonyl photoisomerisation

Thumbnail
View/Open
Pei-PeiYehPhDThesis.pdf (11.41Mb)
Pei-PeiYehPhDThesis_Appendix files.zip (689.6Kb)
Pei-PeiYehThesis_AppendixFiles_TableOfContents.pdf (70.69Kb)
Date
07/2015
Author
Yeh, Pei-Pei
Supervisor
Smith, Andrew David
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Chapter 1 describes an introduction to the area of organocatalysis and delineates previous work within the Smith group on the use of isothioureas in asymmetric catalysis. Chapter 2 showcases a one-pot isothiourea-catalysed Michael addition-lactamisation using cheap and readily available starting materials (carboxylic acids) and easily prepared α,β-unsaturated ketimines via an ammonium enolate intermediate to give dihydropyridinones with high diastereo- and enantioselectivity (typically >90:10 dr, up to 99% ee). The resultant dihydropyridinones can be successfully derivatised into multiple products without erosion of stereointegrity. In chapter 3 the same concept has also been applied to the synthesis of planar molecules by using (phenylthio)acetic acid as a suiTable ammonium enolate precursor. Generation of an ammonium enolate using an achiral isothiourea (DHPB) and reaction with α,β-unsaturated trifluoromethyl ketones allows an isothiourea-mediated Michael addition / lactonisation / thiophenol elimination cascade reaction for the formation of 4,6-disubstituted and 3,4,6-trisubstituted 2-pyrones in good to excellent yields (61-99%). Notably this method allows low catalyst loadings of 1% to be used. The methodology has successfully been applied to the synthesis of a COX-2 inhibitor and a wide range of derivatisations has been performed, giving valuable aromatic and heteroaromatic products containing the trifluoromethyl motif. In chapter 4 a novel N- to C-sulfonyl migration of dihydropyridinones via photoisomerisation is investigated. The scope and limitations of this process is investigated and the process is shown to proceed without compromising the diastereo- or enantiomeric purity of the starting material, giving 5-sulfonyl products in good to excellent yields (67-95%). Mechanistic crossover has indicated that this migration includes an intermolecular step, while EPR studies provided evidence of its radical nature.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/11961

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter