St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Global warming and ocean stratification : a potential result of large extraterrestrial impacts

Thumbnail
View/Open
Paxton_2017_GRL_ExtraterrestrialImpacts_FinalPublishedVersion.pdf (588.5Kb)
Date
28/04/2017
Author
Joshi, Manoj
von Glasow, Roland
Smith, Robin S.
Paxton, Charles G. M.
Maycock, Amanda C.
Lunt, Daniel J.
Loptson, Claire
Markwick, Paul
Keywords
Climate dynamics
Asteroid impact
Meteor impact
Radiative forcing
K-Pg boundary
Neoproterozoic
GE Environmental Sciences
GB Physical geography
Atmospheric Science
3rd-DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The prevailing paradigm for the climatic effects of large asteroid or comet impacts is a reduction in sunlight and significant short-term cooling caused by atmospheric aerosol loading. Here we show, using global climate model experiments, that the large increases in stratospheric water vapor that can occur upon impact with the ocean cause radiative forcings of over +20 W m−2 in the case of 10 km sized bolides. The result of such a positive forcing is rapid climatic warming, increased upper ocean stratification, and potentially disruption of upper ocean ecosystems. Since two thirds of the world's surface is ocean, we suggest that some bolide impacts may actually warm climate overall. For impacts producing both stratospheric water vapor and aerosol loading, radiative forcing by water vapor can reduce or even cancel out aerosol-induced cooling, potentially causing 1–2 decades of increased temperatures in both the upper ocean and on the land surface. Such a response, which depends on the ratio of aerosol to water vapor radiative forcing, is distinct from many previous scenarios for the climatic effects of large bolide impacts, which mostly account for cooling from aerosol loading. Finally, we discuss how water vapor forcing from bolide impacts may have contributed to two well-known phenomena: extinction across the Cretaceous/Paleogene boundary and the deglaciation of the Neoproterozoic snowball Earth.
Citation
Joshi , M , von Glasow , R , Smith , R S , Paxton , C G M , Maycock , A C , Lunt , D J , Loptson , C & Markwick , P 2017 , ' Global warming and ocean stratification : a potential result of large extraterrestrial impacts ' , Geophysical Research Letters , vol. 44 , no. 8 , pp. 3841-3848 . https://doi.org/10.1002/2017GL073330
Publication
Geophysical Research Letters
Status
Peer reviewed
DOI
https://doi.org/10.1002/2017GL073330
ISSN
0094-8276
Type
Journal article
Rights
© 2017 American Geophysical Union. All Rights Reserved. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at: https://dx.doi.org/10.1002/2017GL073330
Description
We acknowledge the support of resources provided by UK National Centre for Atmospheric Science (NCAS), the High Performance Computing Cluster supported by the Research and Specialist Computing Support service at the University of East Anglia, UK Natural Environment Research Council (NERC), grants "CPE" (NE/K014757/1), and "Paleopolar" (NE/I005722/1). Data can be obtained from MJ on request. ACM acknowledges support from an AXA Postdoctoral Fellowship and the ERC ACCI grant Project No 267760, and NERC grant NE/M018199/1.
Collections
  • University of St Andrews Research
URL
http://onlinelibrary.wiley.com/doi/10.1002/2017GL073330/abstract?campaign=wolsavedsearch#footer-support-info
URI
http://hdl.handle.net/10023/11915

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter