Files in this item
Near-complete external difference families
Item metadata
dc.contributor.author | Davis, James A. | |
dc.contributor.author | Huczynska, Sophie | |
dc.contributor.author | Mullen, Gary L. | |
dc.date.accessioned | 2017-08-30T23:32:08Z | |
dc.date.available | 2017-08-30T23:32:08Z | |
dc.date.issued | 2017-09 | |
dc.identifier.citation | Davis , J A , Huczynska , S & Mullen , G L 2017 , ' Near-complete external difference families ' , Designs, Codes and Cryptography , vol. 84 , no. 3 , pp. 415-424 . https://doi.org/10.1007/s10623-016-0275-7 | en |
dc.identifier.issn | 0925-1022 | |
dc.identifier.other | PURE: 245864274 | |
dc.identifier.other | PURE UUID: 8a113fe8-c8f8-49c0-8f90-b2b8ceebc77c | |
dc.identifier.other | Scopus: 84984797679 | |
dc.identifier.other | WOS: 000405514500007 | |
dc.identifier.other | ORCID: /0000-0002-0626-7932/work/74117797 | |
dc.identifier.uri | http://hdl.handle.net/10023/11576 | |
dc.description.abstract | We introduce and explore near-complete external difference families, a partitioning of the nonidentity elements of a group so that each nonidentity element is expressible as a difference of elements from distinct subsets a fixed number of times. We show that the existence of such an object implies the existence of a near-resolvable design. We provide examples and general constructions of these objects, some of which lead to new parameter families of near-resolvable designs on a non-prime-power number of points. Our constructions employ cyclotomy, partial difference sets, and Galois rings. | |
dc.format.extent | 10 | |
dc.language.iso | eng | |
dc.relation.ispartof | Designs, Codes and Cryptography | en |
dc.rights | © 2016, Springer. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at link.springer.com / https://doi.org/10.1007/s10623-016-0275-7 | en |
dc.subject | Difference family | en |
dc.subject | Galois rings | en |
dc.subject | Partial difference sets | en |
dc.subject | QA Mathematics | en |
dc.subject | QA75 Electronic computers. Computer science | en |
dc.subject | Computer Science Applications | en |
dc.subject | Applied Mathematics | en |
dc.subject | T-NDAS | en |
dc.subject.lcc | QA | en |
dc.subject.lcc | QA75 | en |
dc.title | Near-complete external difference families | en |
dc.type | Journal article | en |
dc.description.version | Postprint | en |
dc.contributor.institution | University of St Andrews. School of Mathematics and Statistics | en |
dc.contributor.institution | University of St Andrews. Pure Mathematics | en |
dc.contributor.institution | University of St Andrews. Centre for Interdisciplinary Research in Computational Algebra | en |
dc.identifier.doi | https://doi.org/10.1007/s10623-016-0275-7 | |
dc.description.status | Peer reviewed | en |
dc.date.embargoedUntil | 2017-08-30 |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.