St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Near-complete external difference families

Thumbnail
View/Open
Davis_2016_Near_complete_DCC_AAM.pdf (235.1Kb)
Date
09/2017
Author
Davis, James A.
Huczynska, Sophie
Mullen, Gary L.
Keywords
Difference family
Galois rings
Partial difference sets
QA Mathematics
QA75 Electronic computers. Computer science
Computer Science Applications
Applied Mathematics
T-NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We introduce and explore near-complete external difference families, a partitioning of the nonidentity elements of a group so that each nonidentity element is expressible as a difference of elements from distinct subsets a fixed number of times. We show that the existence of such an object implies the existence of a near-resolvable design. We provide examples and general constructions of these objects, some of which lead to new parameter families of near-resolvable designs on a non-prime-power number of points. Our constructions employ cyclotomy, partial difference sets, and Galois rings.
Citation
Davis , J A , Huczynska , S & Mullen , G L 2017 , ' Near-complete external difference families ' , Designs, Codes and Cryptography , vol. 84 , no. 3 , pp. 415-424 . https://doi.org/10.1007/s10623-016-0275-7
Publication
Designs, Codes and Cryptography
Status
Peer reviewed
DOI
https://doi.org/10.1007/s10623-016-0275-7
ISSN
0925-1022
Type
Journal article
Rights
© 2016, Springer. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at link.springer.com / https://doi.org/10.1007/s10623-016-0275-7
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/11576

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter