St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The identification and down selection of suitable cathode materials for use in next generation thermal batteries

Thumbnail
View/Open
KyriakosGiagloglouPhDThesis.pdf (10.56Mb)
Date
07/12/2017
Author
Giagloglou, Kyriakos
Supervisor
Irvine, John T. S.
Connor, Paul (Paul Alexander)
Funder
Atomic Weapons Establishment (Great Britain)
Keywords
Thermal batteries
Cathodes
CoNi₂S₄
ZrS₃
KNiCl₃
NiCl₂
CoCl₂
NiCo₂S₄
Solid state reaction
High temperature discharge
Li₂MnCl₄
Li₆VCl₈
CuF₂
PbF₂
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
In this work new novel cathode materials such as transition-metal sulfides, chlorides or fluorides were investigated and studied for their use in lithium ion thermal batteries. All cathodes were synthesized by a solid state reaction in sealed quartz tubes with a duration of firing for 1 week at high temperatures (> 500 °C). All structures of compounds were probed by powder X-ray diffraction and the morphology and shape of crystallites of cathodes were characterized by scanning electron microscopy. The electrochemical properties of the batteries were investigated by galvanostatic discharge and galvanostatic intermittent titration technique at high temperatures (> 400 °C). All the batteries used as an anode Li₁₃Si₄, as an electrolyte LiCl-KCl eutectic and as separator MgO. All the products of the discharge mechanism were confirmed using powder X-ray diffraction and EDX analysis. CoNi₂S₄ and NiCo₂S₄ exhibit two voltage plateaux vs Li₁₃Si₄ at 500 °C, one at around 1.75 V and the second at 1.50 V. Capacities of 350 and 290 mA h g⁻¹ were achieved, respectively. NiS, Co₃S₄ and Co₉S₈ were confirmed as the products of discharge mechanism. ZrS₃ exhibits a single flat voltage plateau of 1.70 V at a current density of 11 mA/cm² and a capacity of 357 mA h g⁻¹, at 500 °C was obtained. A new material, LiZr₂S₄, was identified as the product of the electrochemical process, which can be indexed to a = 10.452(8) Å cubic unit cell. KNiCl₃ was tested at different current densities from 15 mA/cm² to 75 mA/cm² and a high cell voltage, with a capacity of 262 mA h g⁻¹ was achieved at 425 °C. Ni metal, KCl and LiCl were confirmed as the products of the discharge mechanism. Li₂MnCl₄ was tested at the same current densities as KNiCl₃ at 400 °C and a capacity of 254 mA h g⁻¹ was achieved. Mn metal and LiCl were confirmed as the products after discharge. Li₆VCl₈ has a capacity of 145 mA h g⁻¹ and a flat voltage plateau of 1.80 V at 500 °C. NiCl₂ has also a capacity of 360 mA h g⁻¹ and a high voltage profile of 2.25 V at 500 °C. CoCl₂ exhibits a lower capacity of 332 mA h g⁻¹ and lower voltage profile compared to NiCl₂ at 500 °C. CuF₂ and PbF₂ were tested at 500 °C. PbF₂ exhibits a single flat voltage plateau of 1.25 V and a capacity of 260 mA h g⁻¹ was obtained. CuF₂ has a high voltage profile but a voltage plateau could not be obtained.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/11563

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter