Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorRowley, S. E.
dc.contributor.authorVojta, T.
dc.contributor.authorJones, A.
dc.contributor.authorGuo, W.
dc.contributor.authorOliveira, J.
dc.contributor.authorMorrison, F. D.
dc.contributor.authorLindfield, N.
dc.contributor.authorBaggio-Saitovitch, E.
dc.contributor.authorWatts, B. E.
dc.contributor.authorScott, J. F.
dc.date.accessioned2017-07-26T13:30:06Z
dc.date.available2017-07-26T13:30:06Z
dc.date.issued2017-07-17
dc.identifier250197988
dc.identifier3211fa1f-7a4d-4773-830e-946781d09126
dc.identifier85026372625
dc.identifier000405697700001
dc.identifier.citationRowley , S E , Vojta , T , Jones , A , Guo , W , Oliveira , J , Morrison , F D , Lindfield , N , Baggio-Saitovitch , E , Watts , B E & Scott , J F 2017 , ' Quantum percolation phase transition and magneto-electric dipole glass in hexagonal ferrites ' , Physical Review. B, Condensed matter and materials physics , vol. 96 , no. 2 , 020407(R) . https://doi.org/10.1103/PhysRevB.96.020407en
dc.identifier.issn1098-0121
dc.identifier.otherORCID: /0000-0002-2813-3142/work/48131877
dc.identifier.urihttps://hdl.handle.net/10023/11292
dc.descriptionSER and EBS acknowledge support from a CONFAP Newton grant. T.V. acknowledges support from the NSF under Grant No. DMR-1506152.en
dc.description.abstractHexagonal ferrites do not only have enormous commercial impact (£2 billion/year in sales) due to applications that include ultra-high density memories, credit card stripes, magnetic bar codes, small motors and low-loss microwave devices, they also have fascinating magnetic and ferroelectric quantum properties at low temperatures. Here we report the results of tuning the magnetic ordering temperature in PbFe12-xGaxO19 to zero by chemical substitution x. The phase transition boundary is found to vary as TN~(1 - x/xc)2/3 with xc very close to the calculated spin percolation threshold which we determine by Monte Carlo simulations, indicating that the zero-temperature phase transition is geometrically driven.We find that this produces a unique form of compositionally-tuned, insulating, ferrimagnetic quantum criticality. Close to the zero temperature phase transition we observe the emergence of an electric-dipole glass induced by magneto-electric coupling. The strong frequency behaviour of the glass freezing temperature Tm has a Vogel-Fulcher dependence with Tm finite, or suppressed below zero in the zero frequency limit, depending on 2 of 18 composition x. These quantum-mechanical properties, along with the multiplicity of low-lying modes near to the zero-temperature phase transition, are likely to greatly extend applications of hexaferrites into the realm of quantum and cryogenic technologies.
dc.format.extent6
dc.format.extent1286318
dc.language.isoeng
dc.relation.ispartofPhysical Review. B, Condensed matter and materials physicsen
dc.subjectQC Physicsen
dc.subjectQD Chemistryen
dc.subjectTK Electrical engineering. Electronics Nuclear engineeringen
dc.subjectNDASen
dc.subject.lccQCen
dc.subject.lccQDen
dc.subject.lccTKen
dc.titleQuantum percolation phase transition and magneto-electric dipole glass in hexagonal ferritesen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doi10.1103/PhysRevB.96.020407
dc.description.statusPeer revieweden
dc.date.embargoedUntil2017-07-17


This item appears in the following Collection(s)

Show simple item record