St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantum percolation phase transition and magneto-electric dipole glass in hexagonal ferrites

Thumbnail
View/Open
2017_4_5_hexaferrite_magnetic_percolation_and_dielectric_glass.pdf (1.226Mb)
Date
17/07/2017
Author
Rowley, S. E.
Vojta, T.
Jones, A.
Guo, W.
Oliveira, J.
Morrison, F. D.
Lindfield, N.
Baggio-Saitovitch, E.
Watts, B. E.
Scott, J. F.
Keywords
QC Physics
QD Chemistry
TK Electrical engineering. Electronics Nuclear engineering
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Hexagonal ferrites do not only have enormous commercial impact (£2 billion/year in sales) due to applications that include ultra-high density memories, credit card stripes, magnetic bar codes, small motors and low-loss microwave devices, they also have fascinating magnetic and ferroelectric quantum properties at low temperatures. Here we report the results of tuning the magnetic ordering temperature in PbFe12-xGaxO19 to zero by chemical substitution x. The phase transition boundary is found to vary as TN~(1 - x/xc)2/3 with xc very close to the calculated spin percolation threshold which we determine by Monte Carlo simulations, indicating that the zero-temperature phase transition is geometrically driven.We find that this produces a unique form of compositionally-tuned, insulating, ferrimagnetic quantum criticality. Close to the zero temperature phase transition we observe the emergence of an electric-dipole glass induced by magneto-electric coupling. The strong frequency behaviour of the glass freezing temperature Tm has a Vogel-Fulcher dependence with Tm finite, or suppressed below zero in the zero frequency limit, depending on 2 of 18 composition x. These quantum-mechanical properties, along with the multiplicity of low-lying modes near to the zero-temperature phase transition, are likely to greatly extend applications of hexaferrites into the realm of quantum and cryogenic technologies.
Citation
Rowley , S E , Vojta , T , Jones , A , Guo , W , Oliveira , J , Morrison , F D , Lindfield , N , Baggio-Saitovitch , E , Watts , B E & Scott , J F 2017 , ' Quantum percolation phase transition and magneto-electric dipole glass in hexagonal ferrites ' , Physical Review. B, Condensed matter and materials physics , vol. 96 , no. 2 , 020407(R) . https://doi.org/10.1103/PhysRevB.96.020407
Publication
Physical Review. B, Condensed matter and materials physics
Status
Peer reviewed
DOI
https://doi.org/10.1103/PhysRevB.96.020407
ISSN
1098-0121
Type
Journal article
Rights
© 2017 American Physical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1103/PhysRevB.96.020407
Description
SER and EBS acknowledge support from a CONFAP Newton grant. T.V. acknowledges support from the NSF under Grant No. DMR-1506152.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/11292

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter