St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the feasibility of exomoon detection via exoplanet phase curve spectral contrast

Thumbnail
View/Open
Forgan_2017_MNRAS_ExomoonDetection_FinalPubVersion.pdf (2.724Mb)
Date
08/2017
Author
Forgan, D. H.
Keywords
Planets and satellites: atmospheres
Planets and satellites: detection
Planets and satellites: general
QB Astronomy
QC Physics
Astronomy and Astrophysics
Space and Planetary Science
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
An exoplanet-exomoon system presents a superposition of phase curves to observers - the dominant component varies according to the planetary period, and the lesser component varies according to both the planetary and the lunar periods. If the spectra of the two bodies differ significantly, then it is likely that there are wavelength regimes where the contrast between the moon and planet is significantly larger. In principle, this effect could be used to isolate periodic oscillations in the combined phase curve. Being able to detect the exomoon component would allow a characterization of the exomoon radius, and potentially some crude atmospheric data. We run a parameter survey of combined exoplanet-exomoon phase curves, which shows that for most sets of planet-moon parameters, the lunar component of the phase curve is undetectable to current state-of-the-art transit observations. Even with future transit survey missions, measuring the exomoon signal will most likely require photometric precision of 10 parts per million or better. The only exception to this is if the moon is strongly tidally heated or in some way self-luminous. In this case, measurements of the phase curve at wavelengths greater than a few μm can be dominated by the lunar contribution. Instruments like the James Webb Space Telescope and its successors are needed to make this method feasible.
Citation
Forgan , D H 2017 , ' On the feasibility of exomoon detection via exoplanet phase curve spectral contrast ' , Monthly Notices of the Royal Astronomical Society , vol. 470 , no. 1 , stx1217 , pp. 416-426 . https://doi.org/10.1093/mnras/stx1217
Publication
Monthly Notices of the Royal Astronomical Society
Status
Peer reviewed
DOI
https://doi.org/10.1093/mnras/stx1217
ISSN
0035-8711
Type
Journal article
Rights
© 2017 The Author. Published by Oxford University Press on behalf of the Royal Astronomical Society. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at: https://dx.doi.org/10.1093/mnras/stx1217
Description
The author gratefully acknowledges support from the ECOGAL project, grant agreement 291227, funded by the European Research Council under ERC-2011-ADG.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/11280

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter