St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lightning chemistry on Earth-like exoplanets

Thumbnail
View/Open
Helling_2017_MNRAS_Lightningchemistry_FinalPubVersion.pdf (1017.Kb)
Date
08/2017
Author
Ardaseva, Aleksandra
Rimmer, Paul B.
Waldmann, Ingo
Rocchetto, Marco
Yurchenko, Sergey N.
Helling, Christiane
Tennyson, Jonathan
Funder
European Research Council
Grant ID
257431 257431
Keywords
Astrobiology
Atmospheric effects
Earth
Hydrodynamics
Molecular processes
QB Astronomy
QC Physics
QD Chemistry
Astronomy and Astrophysics
Space and Planetary Science
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We present a model for lightning shock-induced chemistry that can be applied to atmospheres of arbitrary H/C/N/O chemistry, hence for extrasolar planets and brown dwarfs. The model couples hydrodynamics and the STAND2015 kinetic gas-phase chemistry. For an exoplanet analogue to the contemporary Earth, our model predicts NO and NO2 yields in agreement with observation. We predict height-dependent mixing ratios during a storm soon after a lightning shock of NO ≈ 10-3 at 40 km and NO2 ≈ 10-4 below 40 km, with O3 reduced to trace quantities (≪10-10). For an Earth-like exoplanet with a CO2/N2 dominated atmosphere and with an extremely intense lightning storm over its entire surface, we predict significant changes in the amount of NO, NO2, O3, H2O, H2 and predict a significant abundance of C2N. We find that, for the Early Earth, O2 is formed in large quantities by lightning but is rapidly processed by the photochemistry, consistent with previous work on lightning. The chemical effect of persistent global lightning storms are predicted to be significant, primarily due to NO2, with the largest spectral features present at ∼3.4 and ∼6.2 μm. The features within the transmission spectrum are on the order of 1 ppm and therefore are not likely detectable with the James Webb Space Telescope. Depending on its spectral properties, C2N could be a key tracer for lightning on Earth-like exoplanets with a N2/CO2 bulk atmosphere, unless destroyed by yet unknown chemical reactions.
Citation
Ardaseva , A , Rimmer , P B , Waldmann , I , Rocchetto , M , Yurchenko , S N , Helling , C & Tennyson , J 2017 , ' Lightning chemistry on Earth-like exoplanets ' , Monthly Notices of the Royal Astronomical Society , vol. 470 , no. 1 , stx1012 , pp. 187-196 . https://doi.org/10.1093/mnras/stx1012
Publication
Monthly Notices of the Royal Astronomical Society
Status
Peer reviewed
DOI
https://doi.org/10.1093/mnras/stx1012
ISSN
0035-8711
Type
Journal article
Rights
© 2017 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at: https://doi.org/10.1093/mnras/stx1012
Description
AA, PBR and ChH gratefully acknowledge the support of the ERC Starting Grant no. 257431. IW, MR, SNY and JT also gratefully acknowledge the support of the STFC (ST/K502406/1), and the ERC projects ExoMol (26719) and ExoLights (617119).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/11276

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter