St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ionic strength is a barrier to the habitability of Mars

Thumbnail
View/Open
Fox_Powell_Astrobiology_rev_submitted_29.1.16.pdf (1.862Mb)
Date
06/06/2016
Author
Fox-Powell, Mark George
Hallsworth, John
Cousins, Claire Rachel
Cockell, Charles
Funder
The Royal Society of Edinburgh
Grant ID
Keywords
Habitability
Mars
Salts
Water activity
Life in extreme environments
G Geography (General)
QB Astronomy
NDAS
BDC
R2C
Metadata
Show full item record
Abstract
The thermodynamic availability of water (water activity) strictly limits microbial propagation on Earth, particularly in hypersaline environments. A considerable body of evidence indicates the existence of hypersaline surface waters throughout the history of Mars; therefore it is assumed that, as on Earth, water activity is a major limiting factor for martian habitability. However, the differing geological histories of Earth and Mars have driven variations in their respective aqueous geochemistry, with as-yet-unknown implications for habitability. Using a microbial community enrichment approach, we investigated microbial habitability for a suite of simulated martian brines. While the habitability of some martian brines was consistent with predictions made from water activity, others were uninhabitable even when the water activity was biologically permissive. We demonstrate experimentally that high ionic strength, driven to extremes on Mars by the ubiquitous occurrence of multivalent ions, renders these environments uninhabitable despite the presence of biologically available water. These findings show how the respective geological histories of Earth and Mars, which have produced differences in the planets' dominant water chemistries, have resulted in different physicochemical extremes which define the boundary space for microbial habitability.
Citation
Fox-Powell , M G , Hallsworth , J , Cousins , C R & Cockell , C 2016 , ' Ionic strength is a barrier to the habitability of Mars ' , Astrobiology , vol. 16 , no. 6 , pp. 427-442 . https://doi.org/10.1089/ast.2015.1432
Publication
Astrobiology
Status
Peer reviewed
DOI
https://doi.org/10.1089/ast.2015.1432
ISSN
1531-1074
Type
Journal article
Rights
Copyright Mary Ann Liebert, Inc. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://dx.doi.org/10.1089/ast.2015.1432
Description
Claire R. Cousins is supported by a Royal Society of Edinburgh Personal Research Fellowship. Funding for this work was provided by the UK Space Agency as part of the Aurora Science program. Support was also provided by Science and Technology Facilities Council (STFC) Grant no. ST/M001261/1.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/10912

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter