Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (Dactylorhiza) with distinct ecological optima
Date
04/07/2017Author
Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The orchid family is the largest in the angiosperms, but little is known about the molecular basis of the significant variation they exhibit. We investigate here the transcriptomic divergence between two European terrestrial orchids, Dactylorhiza incarnata and D. fuchsii, and integrate these results in the context of their distinct ecologies that we also document. Clear signals of lineage-specific adaptive evolution of protein-coding sequences are identified, notably targeting elements of biotic defence, including both physical and chemical adaptations in the context of divergent pools of pathogens and herbivores. In turn, a substantial regulatory divergence between the two species appears linked to adaptation/acclimation to abiotic conditions. Several of the pathways affected by differential expression are also targeted by deviating post-transcriptional regulation via sRNAs. Finally, Dactylorhiza incarnata appears to suffer from insufficient sRNA control over the activity of RNA-dependent DNA polymerase, resulting in increased activity of class I transposable elements and, over time, in larger genome size than that of D. fuchsii. The extensive molecular divergence between the two species suggests significant genomic and transcriptomic shock in their hybrids and offers insights into the difficulty of coexistence at the homoploid level. Altogether, biological response to selection, accumulated during the history of these orchids, appears governed by their microenvironmental context, in which biotic and abiotic pressures act synergistically to shape transcriptome structure, expression and regulation.
Citation
Balao , F , Trucchi , E , Wolfe , T , Hao , B-H , Lorenzo , M T , Baar , J , Sedman , L , Kosiol , C , Amman , F , Chase , M W , Hedrén , M & Paun , O 2017 , ' Adaptive sequence evolution is driven by biotic stress in a pair of orchid species ( Dactylorhiza ) with distinct ecological optima ' , Molecular Ecology , vol. 26 , no. 14 , pp. 3649-3662 . https://doi.org/10.1111/mec.14123
Publication
Molecular Ecology
Status
Peer reviewed
ISSN
1365-294XType
Journal article
Rights
© 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,provided the original work is properly cited.
Description
This work was funded by an Austrian Science Fund (FWF) project (Y661-B16) awarded to OP and a Marie Curie IEF fellowship (PERG-GA-2011-299608-TRANSADAPTATION) to FB.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.