St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (Dactylorhiza) with distinct ecological optima

Thumbnail
View/Open
Balao_et_al_2017_Molecular_Ecology_CC.pdf (752.2Kb)
Date
04/07/2017
Author
Balao, Francisco
Trucchi, Emiliano
Wolfe, Thomas
Hao, Bao-Hai
Lorenzo, Maria Teresa
Baar, Juliane
Sedman, Laura
Kosiol, Carolin
Amman, Fabian
Chase, Mark W.
Hedrén, Mikael
Paun, Ovidiu
Keywords
Abiotic stress
Defence
Ecological divergence
Positive selection
Small RNAs
Transcriptomics
QH301 Biology
QH426 Genetics
QK Botany
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The orchid family is the largest in the angiosperms, but little is known about the molecular basis of the significant variation they exhibit. We investigate here the transcriptomic divergence between two European terrestrial orchids, Dactylorhiza incarnata and D. fuchsii, and integrate these results in the context of their distinct ecologies that we also document. Clear signals of lineage-specific adaptive evolution of protein-coding sequences are identified, notably targeting elements of biotic defence, including both physical and chemical adaptations in the context of divergent pools of pathogens and herbivores. In turn, a substantial regulatory divergence between the two species appears linked to adaptation/acclimation to abiotic conditions. Several of the pathways affected by differential expression are also targeted by deviating post-transcriptional regulation via sRNAs. Finally, Dactylorhiza incarnata appears to suffer from insufficient sRNA control over the activity of RNA-dependent DNA polymerase, resulting in increased activity of class I transposable elements and, over time, in larger genome size than that of D. fuchsii. The extensive molecular divergence between the two species suggests significant genomic and transcriptomic shock in their hybrids and offers insights into the difficulty of coexistence at the homoploid level. Altogether, biological response to selection, accumulated during the history of these orchids, appears governed by their microenvironmental context, in which biotic and abiotic pressures act synergistically to shape transcriptome structure, expression and regulation.
Citation
Balao , F , Trucchi , E , Wolfe , T , Hao , B-H , Lorenzo , M T , Baar , J , Sedman , L , Kosiol , C , Amman , F , Chase , M W , Hedrén , M & Paun , O 2017 , ' Adaptive sequence evolution is driven by biotic stress in a pair of orchid species ( Dactylorhiza ) with distinct ecological optima ' , Molecular Ecology , vol. 26 , no. 14 , pp. 3649-3662 . https://doi.org/10.1111/mec.14123
Publication
Molecular Ecology
Status
Peer reviewed
DOI
https://doi.org/10.1111/mec.14123
ISSN
1365-294X
Type
Journal article
Rights
© 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,provided the original work is properly cited.
Description
This work was funded by an Austrian Science Fund (FWF) project (Y661-B16) awarded to OP and a Marie Curie IEF fellowship (PERG-GA-2011-299608-TRANSADAPTATION) to FB.
Collections
  • University of St Andrews Research
URL
http://onlinelibrary.wiley.com/doi/10.1111/mec.14123/full#footer-support-info
URI
http://hdl.handle.net/10023/10679

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter