St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Information and knowing when to forget it

Thumbnail
View/Open
Sharma_Information_IJCNN2017_AAM.pdf (361.2Kb)
Date
14/05/2017
Author
Sharma, Rohit
Arandelovic, Ognjen
Keywords
QA75 Electronic computers. Computer science
3rd-DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
In this paper we propose several novel approaches for incorporating forgetting mechanisms into sequential prediction based machine learning algorithms. The broad premise of our work, supported and motivated in part by recent findings stemming from neurology research on the development of human brains, is that knowledge acquisition and forgetting are complementary processes, and that learning can (perhaps unintuitively) benefit from the latter too. We demonstrate that if forgetting is implemented in a purposeful and date driven manner, there are a number of benefits which can be gained from discarding information. The framework we introduce is a general one and can be used with any baseline predictor of choice. Hence in this sense it is best described as a meta-algorithm. The method we described was developed through a series of steps which increase the adaptability of the model, while being data driven.We first discussed a weakly adaptive forgetting process which we termed passive forgetting. A fully adaptive framework, which we termed active forgetting was developed by enveloping a passive forgetting process with a monitoring, self-aware module which detects contextual changes and makes a statistically informed choice when the model parameters should be abruptly rather than gradually updated. The effectiveness of the proposed metaframework was demonstrated on a real world data set concerned with a challenge of major practical importance: that of predicting currency exchange rates. Our approach was shown to be highly effective, reducing prediction errors by nearly 40%.
Citation
Sharma , R & Arandelovic , O 2017 , Information and knowing when to forget it . in 2017 IEEE International Joint Conference on Neural Networks (IJCNN) . , 7966253 , IEEE , pp. 3184-3190 , 2017 International Joint Conference on Neural Networks , Anchorage , United States , 14/05/17 . https://doi.org/10.1109/IJCNN.2017.7966253
 
conference
 
Publication
2017 IEEE International Joint Conference on Neural Networks (IJCNN)
DOI
https://doi.org/10.1109/IJCNN.2017.7966253
Type
Conference item
Rights
© 2017, IEEE. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at ieeexplore.ieee.org / https://doi.org/10.1109/IJCNN.2017.7966253
Collections
  • Computer Science Research
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/10505

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter