St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simulating the in situ condensation process of solar prominences

Thumbnail
View/Open
Antolin_2014_AJL_SolarProminences_FinalPubVersion.pdf (939.6Kb)
Date
27/08/2014
Author
Xia, C.
Keppens, R.
Antolin, P.
Porth, O.
Keywords
Magnetohydrodynamics: MHD
Sun: corona
Sun: filaments
Prominences
QB Astronomy
QC Physics
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Prominences in the solar corona are a hundredfold cooler and denser than their surroundings, with a total mass of 1013 up to 1015 g. Here, we report on the first comprehensive simulations of three-dimensional, thermally and gravitationally stratified magnetic flux ropes where in situ condensation to a prominence occurs due to radiative losses. After a gradual thermodynamic adjustment, we witness a phase where runaway cooling occurs while counter-streaming shearing flows drain off mass along helical field lines. After this drainage, a prominence-like condensation resides in concave upward field regions, and this prominence retains its overall characteristics for more than two hours. While condensing, the prominence establishes a prominence-corona transition region where magnetic field-aligned thermal conduction is operative during the runaway cooling. The prominence structure represents a force-balanced state in a helical flux rope. The simulated condensation demonstrates a right-bearing barb, as a remnant of the drainage. Synthetic images at extreme ultraviolet wavelengths follow the onset of the condensation, and confirm the appearance of horns and a three-part structure for the stable prominence state, as often seen in erupting prominences. This naturally explains recent Solar Dynamics Observatory views with the Atmospheric Imaging Assembly on prominences in coronal cavities demonstrating horns.
Citation
Xia , C , Keppens , R , Antolin , P & Porth , O 2014 , ' Simulating the in situ condensation process of solar prominences ' , Astrophysical Journal Letters , vol. 792 , L38 . https://doi.org/10.1088/2041-8205/792/2/L38
Publication
Astrophysical Journal Letters
Status
Peer reviewed
DOI
https://doi.org/10.1088/2041-8205/792/2/L38
ISSN
2041-8205
Type
Journal article
Rights
© 2014. The American Astronomical Society. All rights reserved. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at: https://dx.doi.org/10.1088/2041-8205/792/2/L38
Collections
  • University of St Andrews Research
URL
http://adsabs.harvard.edu/abs/2014ApJ...792L..38X
URI
http://hdl.handle.net/10023/10285

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter