St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

High-affinity RNA binding by a hyperthermophilic single-stranded DNA-binding protein

Thumbnail
View/Open
Morten_2017_HighAffinity_Extremophiles_CC.pdf (1.115Mb)
Date
03/2017
Author
Morten, Michael John
Gamsjaeger, Roland
Cubeddu, Liza
Kariawasam, Ruvini
Peregrina, Jose Ramon
Penedo-Esteiro, Juan Carlos
White, Malcolm Frederick
Keywords
RNA binding proteins
OB fold
Single-molecule dynamics
Förster resonance energy transfer
Nuclear magnetic resonance
QD Chemistry
QH301 Biology
QH426 Genetics
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Single-stranded DNA-binding proteins (SSBs), including replication protein A (RPA) in eukaryotes, play a central role in DNA replication, recombination, and repair. SSBs utilise an oligonucleotide/oligosaccharide-binding (OB) fold domain to bind DNA, and typically oligomerise in solution to bring multiple OB fold domains together in the functional SSB. SSBs from hyperthermophilic crenarchaea, such as Sulfolobus solfataricus, have an unusual structure with a single OB fold coupled to a flexible C-terminal tail. The OB fold resembles those in RPA, whilst the tail is reminiscent of bacterial SSBs and mediates interaction with other proteins. One paradigm in the field is that SSBs bind specifically to ssDNA and much less strongly to RNA, ensuring that their functions are restricted to DNA metabolism. Here, we use a combination of biochemical and biophysical approaches to demonstrate that the binding properties of S. solfataricus SSB are essentially identical for ssDNA and ssRNA. These features may represent an adaptation to a hyperthermophilic lifestyle, where DNA and RNA damage is a more frequent event.
Citation
Morten , M J , Gamsjaeger , R , Cubeddu , L , Kariawasam , R , Peregrina , J R , Penedo-Esteiro , J C & White , M F 2017 , ' High-affinity RNA binding by a hyperthermophilic single-stranded DNA-binding protein ' , Extremophiles , vol. 21 , no. 2 , pp. 369-379 . https://doi.org/10.1007/s00792-016-0910-2
Publication
Extremophiles
Status
Peer reviewed
DOI
https://doi.org/10.1007/s00792-016-0910-2
ISSN
1431-0651
Type
Journal article
Rights
© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/10082

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter