St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star

Thumbnail
View/Open
Donati_2016_AHotJupiter_Nature_AAM.pdf (808.7Kb)
Date
30/06/2016
Author
Donati, J F
Moutou, C
Malo, L
Baruteau, C
Yu, L
Hébrard, E
Hussain, G
Alencar, S
Ménard, F
Bouvier, J
Petit, P
Takami, M
Doyon, R
Cameron, Andrew Collier
Funder
Science & Technology Facilities Council
Grant ID
ST/M001296/1
Keywords
QB Astronomy
QC Physics
NDAS
BDC
Metadata
Show full item record
Abstract
Hot Jupiters are giant Jupiter-like exoplanets that orbit their host stars 100 times more closely than Jupiter orbits the Sun. These planets presumably form in the outer part of the primordial disk from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star1. It is, however, unclear whether this occurs early in the lives of hot Jupiters, when they are still embedded within protoplanetary disks2, or later, once multiple planets are formed and interact3. Although numerous hot Jupiters have been detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars4, 5, 6, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we report that the radial velocities of the young star V830 Tau exhibit a sine wave of period 4.93 days and semi-amplitude 75 metres per second, detected with a false-alarm probability of less than 0.03 per cent, after filtering out the magnetic activity plaguing the spectra. We find that this signal is unrelated to the 2.741-day rotation period of V830 Tau and we attribute it to the presence of a planet of mass 0.77 times that of Jupiter, orbiting at a distance of 0.057 astronomical units from the host star. Our result demonstrates that hot Jupiters can migrate inwards in less than two million years, probably as a result of planet–disk interactions2.
Citation
Donati , J F , Moutou , C , Malo , L , Baruteau , C , Yu , L , Hébrard , E , Hussain , G , Alencar , S , Ménard , F , Bouvier , J , Petit , P , Takami , M , Doyon , R & Cameron , A C 2016 , ' A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star ' , Nature , vol. 534 , no. 7609 , pp. 662-666 . https://doi.org/10.1038/nature18305
Publication
Nature
Status
Peer reviewed
DOI
https://doi.org/10.1038/nature18305
ISSN
0028-0836
Type
Journal article
Rights
Copyright © 2016, Macmillan Publishers. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://dx.doi.org/10.1038/nature18305
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/9997

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter