Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorMohebalhojeh, Ali R.
dc.contributor.authorJoghataei, Mohammad
dc.contributor.authorDritschel, David G.
dc.date.accessioned2016-12-11T00:33:07Z
dc.date.available2016-12-11T00:33:07Z
dc.date.issued2016-06
dc.identifier.citationMohebalhojeh , A R , Joghataei , M & Dritschel , D G 2016 , ' Toward a PV-based algorithm for the dynamical core of hydrostatic global models ' , Monthly Weather Review , vol. 144 , no. 6 , pp. 2481-2502 . https://doi.org/10.1175/MWR-D-15-0379.1en
dc.identifier.issn0027-0644
dc.identifier.otherPURE: 245326488
dc.identifier.otherPURE UUID: 503e16d2-fb19-4d36-987c-b1b7c16898c7
dc.identifier.otherWOS: 000378526600002
dc.identifier.otherScopus: 84978036339
dc.identifier.otherWOS: 000378526600002
dc.identifier.urihttp://hdl.handle.net/10023/9957
dc.description.abstractThe diabatic contour-advective semi-Lagrangian (DCASL) algorithms previously constructed for the shallow-water and multilayer Boussinesq primitive equations are extended to multilayer non-Boussinesq equations on the sphere using a hybrid terrain-following-isentropic (sigma-) vertical coordinate. It is shown that the DCASL algorithms face challenges beyond more conventional algorithms in that various types of damping, filtering, and regularization are required for computational stability, and the nonlinearity of the hydrostatic equation in the sigma- coordinate causes convergence problems with setting up a semi-implicit time-stepping scheme to reduce computational cost. The prognostic variables are an approximation to the Rossby-Ertel potential vorticity Q, a scaled pressure thickness, the horizontal divergence, and the surface potential temperature. Results from the DCASL algorithm in two formulations of the sigma- coordinate, differing only in the rate at which the vertical coordinate tends to with increasing height, are assessed using the baroclinic instability test case introduced by Jablonowski and Williamson in 2006. The assessment is based on comparisons with available reference solutions as well as results from two other algorithms derived from the DCASL algorithm: one with a semi-Lagrangian solution for Q and another with an Eulerian grid-based solution procedure with relative vorticity replacing Q as the prognostic variable. It is shown that at intermediate resolutions, results comparable to the reference solutions can be obtained.
dc.format.extent22
dc.language.isoeng
dc.relation.ispartofMonthly Weather Reviewen
dc.rights© 2016, American Meteorological Society. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at journals.ametsoc.com / https://dx.doi.org/10.1175/MWR-D-15-0379.1en
dc.subjectMathematical and statistical techniquesen
dc.subjectIsentropic analysisen
dc.subjectNumerical analysisen
dc.subjectmodelingen
dc.subjectModels and modelingen
dc.subjectGE Environmental Sciencesen
dc.subjectQA Mathematicsen
dc.subjectT-NDASen
dc.subject.lccGEen
dc.subject.lccQAen
dc.titleToward a PV-based algorithm for the dynamical core of hydrostatic global modelsen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews.Applied Mathematicsen
dc.contributor.institutionUniversity of St Andrews.Marine Alliance for Science & Technology Scotlanden
dc.contributor.institutionUniversity of St Andrews.Scottish Oceans Instituteen
dc.identifier.doihttps://doi.org/10.1175/MWR-D-15-0379.1
dc.description.statusPeer revieweden
dc.date.embargoedUntil2016-12-10


This item appears in the following Collection(s)

Show simple item record