St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ultrafast electronic energy transfer beyond the weak coupling limit in a proximal but orthogonal molecular dyad

Thumbnail
View/Open
Hedley_2015_UltrafastElectronic_JPCA_AAM.pdf (841.2Kb)
Date
24/12/2015
Author
Hedley, Gordon J.
Ruseckas, Arvydas
Benniston, Andrew C.
Harriman, Anthony
Samuel, Ifor D. W.
Funder
EPSRC
European Research Council
Grant ID
N/A
Keywords
Excitation transfer
Quantum coherence
Forster theory
Systems
Photoluminescence
QD Chemistry
TP Chemical technology
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Electronic energy transfer (EET) from a donor to an acceptor is an important mechanism that controls the light harvesting efficiency in a wide variety of systems, including artificial and natural photosynthesis and contemporary photovoltaic technologies. The detailed mechanism of BET at short distances or large angles between the donor and acceptor is poorly understood. Here the influence of the orientation between the donor and acceptor on EET is explored using a molecule with two nearly perpendicular chromophores. Very fast EET with a time constant of 120 fs is observed, which is at least 40 times faster than the time predicted by Coulombic coupling calculations. Depolarization of the emission signal indicates that the transition dipole rotates through ca. 64 degrees, indicating the near orthogonal nature of the EET event. The rate of EET is found to be similar to structural relaxation rates in the photoexcited oligothiophene donor alone, which suggests that this initial relaxation brings the dyad to a conical intersection where the excitation jumps to the acceptor.
Citation
Hedley , G J , Ruseckas , A , Benniston , A C , Harriman , A & Samuel , I D W 2015 , ' Ultrafast electronic energy transfer beyond the weak coupling limit in a proximal but orthogonal molecular dyad ' , Journal of Physical Chemistry A , vol. 119 , no. 51 , pp. 12665-12671 . https://doi.org/10.1021/acs.jpca.5b08640
Publication
Journal of Physical Chemistry A
Status
Peer reviewed
DOI
https://doi.org/10.1021/acs.jpca.5b08640
ISSN
1089-5639
Type
Journal article
Rights
© 2015, American Chemical Society. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at pubs.acs.org / https://dx.doi.org/10.1021/acs.jpca.5b08640
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/9893

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter