St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Distance sampling detection functions : 2D or not 2D?

Thumbnail
View/Open
Borchers_Biometrics_Distance_sampling_AM.pdf (689.5Kb)
Date
15/06/2017
Author
Borchers, David Louis
Cox, Martin James
Keywords
g(0)=1
Line transect
Point transect
Removal method
Responsive movement
Survival analysis
GE Environmental Sciences
DAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Conventional distance sampling (CDS) methods assume that animals are uniformly distributed in the vicinity of lines or points. But when animals move in response to observers before detection, or when lines or points are not located randomly, this assumption may fail. By formulating distance sampling models as survival models, we show that using time to first detection in addition to perpendicular distance (line transect surveys) or radial distance (point transect surveys) allows estimation of detection probability, and hence density, when animal distribution in the vicinity of lines or points is not uniform and is unknown. We also show that times to detection can provide information about failure of the CDS assumption that detection probability is 1 at distance zero. We obtain a maximum likelihood estimator of line transect survey detection probability and effective strip half-width using times to detection, and we investigate its properties by simulation in situations where animals are nonuniformly distributed and their distribution is unknown. The estimator is found to perform well when detection probability at distance zero is 1. It allows unbiased estimates of density to be obtained in this case from surveys in which there has been responsive movement prior to animals coming within detectable range. When responsive movement continues within detectable range, estimates may be biased but are likely less biased than estimates from methods that assuming no responsive movement. We illustrate by estimating primate density from a line transect survey in which animals are known to avoid the transect line, and a shipboard survey of dolphins that are attracted to it.
Citation
Borchers , D L & Cox , M J 2017 , ' Distance sampling detection functions : 2D or not 2D? ' , Biometrics , vol. 73 , no. 2 , pp. 593-602 . https://doi.org/10.1111/biom.12581
Publication
Biometrics
Status
Peer reviewed
DOI
https://doi.org/10.1111/biom.12581
ISSN
1541-0420
Type
Journal article
Rights
© 2016, The International Biometric Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1111/biom.12581
Description
MJC was funded by Australian Research Council grant FS110200057.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/9885

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter