St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysing the history of autism spectrum disorder using topic models

Thumbnail
View/Open
Beykikhoshk_ASD_DSAA2016_AAM.pdf (2.510Mb)
Date
17/10/2016
Author
Beykikhoshk, Adham
Phung, Dinh
Arandelovic, Ognjen
Venkatesh, Svetha
Keywords
Bayesian nonparametrics
Data mining
Autism spectrum disorder
QA75 Electronic computers. Computer science
QH301 Biology
RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We describe a novel framework for the discovery of underlying topics of a longitudinal collection of scholarly data,and the tracking of their lifetime and popularity over time. Unlike the social media or news data, as the topic nuances in science result in new scientific directions to emerge, a new approach to model the longitudinal literature data is using topics which remain identifiable over the course of time. Current studies either disregard the time dimension or treat it as an exchangeable covariate when they fix the topics over time or do not share the topics over epochs when they model the time naturally. We address these issues by adopting a non-parametric Bayesian approach. We assume the data is partially exchangeable and divided it into consecutive epochs. Then, by fixing the topics in a recurrent Chinese restaurant franchise, we impose a static topical structure on the corpus such that the they are shared across epochs and the documents within epochs. We demonstrate the effectiveness of the proposed framework on a collection of medical literature related to autism spectrum disorder. We collect a large corpus of publications and carefully examining two important research issues of the domain as case studies. Moreover, we make the results of our experiment and the source code of the model, freely available to aid other researchers by analysing the results or applying the model to their data collections.
Citation
Beykikhoshk , A , Phung , D , Arandelovic , O & Venkatesh , S 2016 , Analysing the history of autism spectrum disorder using topic models . in 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA'2016) . , 7796964 , IEEE , pp. 762-771 , 3rd IEEE International Conference on Data Science and Analytics , Montreal , Canada , 17/10/16 . https://doi.org/10.1109/DSAA.2016.65
 
conference
 
Publication
2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA'2016)
DOI
https://doi.org/10.1109/DSAA.2016.65
Type
Conference item
Rights
© 2016, IEEE. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at ieeexplore.ieee.org / https://doi.org/10.1109/DSAA.2016.65
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/9855

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter