Bipolar conductance switching of single anthradithiophene molecules
View/ Open
Date
22/12/2015Author
Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Single molecular switches are basic device elements in organic electronics. The pentacene analogue anthradithiophene (ADT) shows a fully reversible binary switching between different adsorption conformations on a metallic surface accompanied by a charge transfer. These transitions are activated locally in single molecules in a low-temperature scanning tunneling microscope . The switching induces changes between bistable orbital structures and energy level alignment at the interface. The most stable geometry, the “off” state, which all molecules adopt upon evaporation, corresponds to a short adsorption distance at which the electronic interactions of the acene rings bend the central part of the molecule toward the surface accompanied by a significant charge transfer from the metallic surface to the ADT molecules. This leads to a shift of the lowest unoccupied molecular orbital down to the Fermi level (EF). In the “on” state the molecule has a flat geometry at a larger distance from the surface; consequently the interaction is weaker, resulting in a negligible charge transfer with an orbital structure resembling the highest occupied molecular orbital when imaged close to EF. The potential barrier between these two states can be overcome reversibly by injecting charge carriers locally into individual molecules. Voltage-controlled current traces show a hysteresis characteristic of a bipolar switching behavior. The interpretation is supported by first-principles calculations.
Citation
Borca , B , Schendel , V , Petuya , R , Pentegov , I , Michnowicz , T , Kraft , U , Klauk , H , Arnau , A , Wahl , P , Schlickum , U & Kern , K 2015 , ' Bipolar conductance switching of single anthradithiophene molecules ' , ACS Nano , vol. 9 , no. 12 , pp. 12506-12512 . https://doi.org/10.1021/acsnano.5b06000
Publication
ACS Nano
Status
Peer reviewed
ISSN
1936-0851Type
Journal article
Rights
Copyright © 2015 American Chemical Society. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at: https://dx.doi.org/10.1021/acsnano.5b06000
Description
The authors acknowledge funding by the Emmy-Noether-Program of the Deutsche Forschungsgemeinschaft, the SFB 767, and the Baden-Württemberg Stiftung. R.P. and A.A. thank the Basque Departamento de Universidades e Investigacion (grant no. IT-756-13) and the Spanish Ministerio de Economia y Competitividad (grant no. FIS2013-48286-C2-8752-P) for financial support.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.