St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of thickness on dielectric, ferroelectric, and optical properties of Ni substituted Pb(Zr0.2Ti0.8)O3 thin films

Thumbnail
View/Open
Scott_2015_ThinFilms_JoAP_FinalPubVersion.pdf (9.630Mb)
Date
13/11/2015
Author
Kumari, Shalini
Ortega, Nora
Pradhan, Dhiren K.
Kumar, Ashok
Scott, James Floyd
Katiyar, Ram S.
Keywords
QC Physics
NDAS
Metadata
Show full item record
Abstract
We report thickness dependent dielectric,ferroelectric, and optical properties of Ni substituted Pb(Zr0.2Ti0.8)O3 thin films. The Pb(Zr0.2Ti0.8)0.70Ni0.30O3−δ (PZTNi30) thin films for various thicknesses, ranging from 5 nm to 400 nm, were fabricated by pulsed laser deposition technique. Giant dielectric dispersion, low dielectric loss, large dielectric constant  -1000–1500 from 100 Hz to 100 kHz, and diffused dielectric anomaly near 570–630 K were observed in PZTNi30 thin films. These films show well saturated ferroelectric hysteresis, with large remanent polarization. It also illustrated excellent optical transparency which decreased from 82 to 72% with increasing film thickness from 5 nm to 400 nm for the probe wavelengths ranging from 200 to 1100 nm. A decrease in direct bandgap (Eg) values from 4 eV to 3.4 eV and indirect-Eg values from 3.5 eV to 2.9 eV were observed for PZTNi30 thin films with increase in film thickness from 5 nm to 400 nm, respectively. The direct and indirect bandgaps were discussed in context of film thickness and grain size effects. Our investigations on optical properties of PZTNi30 thin films suggest that bandgap can be modified as a function of film thickness which may be useful for readers working to develop novel candidates for ferroelectric photovoltaic.
Citation
Kumari , S , Ortega , N , Pradhan , D K , Kumar , A , Scott , J F & Katiyar , R S 2015 , ' Effect of thickness on dielectric, ferroelectric, and optical properties of Ni substituted Pb(Zr 0.2 Ti 0.8 )O 3 thin films ' , Journal of Applied Physics , vol. 118 , no. 18 , 184103 . https://doi.org/10.1063/1.4935481
Publication
Journal of Applied Physics
Status
Peer reviewed
DOI
https://doi.org/10.1063/1.4935481
ISSN
0021-8979
Type
Journal article
Rights
© 2015 AIP Publishing LLC. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at: https://dx.doi.org/10.1063/1.4935481
Description
This work was supported by NSF Grant EPS-01002410. N. Ortega acknowledges support from the DoE Grant DE-FG02-08ER46526.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/9815

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter