St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental and theoretical analysis of Landauer erasure in nanomagnetic switches of different sizes

Thumbnail
View/Open
Hofling_2015_NE_Experimental_AM.pdf (1.235Mb)
Date
2015
Author
Martini, L.
Pancaldi, M.
Madami, M.
Vavassori, P.
Gubbiotti, G.
Tacchi, S.
Hartmann, F.
Emmerling, M.
Höfling, Sven
Worschech, L.
Carlotti, G.
Keywords
Logic switches
Nanodevice
Fluctuations
Zero-power ICT
Nanomagnetism
QC Physics
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Bistable nanomagnetic switches are extensively used in storage media and magnetic memories, associating each logic state to a different equilibrium orientation of the magnetization. Here we consider the issue of the minimum energy required to change the information content of nanomagnetic switches, a crucial topic to face fundamental challenges of current technology, such as power dissipation and limits of scaling. The energy dissipated during a reset operation, also known as “Landauer erasure”, has been accurately measured at room temperature by vectorial magneto-optical measurements in arrays of elongated Permalloy nanodots. Both elliptical and rectangular dots were analysed, with lateral sizes ranging from several hundreds to a few tens of nanometers and thickness of either 10 nm or 5 nm. The experimental results show a nearly linear decrease of the dissipated energy with the dot volume, ranging from three to one orders of magnitude above the theoretical Landauer limit of kBT×ln(2). These experimental findings are corroborated by micromagnetic simulations showing that the significant deviations from the ideal macrospin behavior are caused by both inhomogeneous magnetization distribution and edge effects, leading to an average produced heat which is appreciably larger than that expected for ideal nanoswitches.
Citation
Martini , L , Pancaldi , M , Madami , M , Vavassori , P , Gubbiotti , G , Tacchi , S , Hartmann , F , Emmerling , M , Höfling , S , Worschech , L & Carlotti , G 2015 , ' Experimental and theoretical analysis of Landauer erasure in nanomagnetic switches of different sizes ' , Nano Energy , vol. In press . https://doi.org/10.1016/j.nanoen.2015.10.028
Publication
Nano Energy
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.nanoen.2015.10.028
ISSN
2211-2855
Type
Journal article
Rights
Copyright © 2015 Published by Elsevier Ltd. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at: https://dx.doi.org/10.1016/j.nanoen.2015.10.028
Description
The authors acknowledge support by the European Union (FPVII (2007-2013) under G.A. n.318287 LANDAUER, and by MIUR-PRIN 2010–11 Project 2010ECA8P3 “DyNanoMag.”. M.P. and P.V. acknowledge funding from the Spanish Ministry of Economy and Competitiveness (Project No. MAT2012-36844); M.P. acknowledges support by Spanish Ministry of Economy and Competitiveness (grant BES-2013-063690).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/9801

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter