Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorLundt, Nils
dc.contributor.authorKlembt, Sebastian
dc.contributor.authorCherotchenko, Evgeniia
dc.contributor.authorBetzold, Simon
dc.contributor.authorIff, Oliver
dc.contributor.authorNalitov, Anton V.
dc.contributor.authorKlaas, Martin
dc.contributor.authorDietrich, Christof P.
dc.contributor.authorKavokin, Alexey V.
dc.contributor.authorHöfling, Sven
dc.contributor.authorSchneider, Christian
dc.date.accessioned2016-10-31T12:30:15Z
dc.date.available2016-10-31T12:30:15Z
dc.date.issued2016-10-31
dc.identifier.citationLundt , N , Klembt , S , Cherotchenko , E , Betzold , S , Iff , O , Nalitov , A V , Klaas , M , Dietrich , C P , Kavokin , A V , Höfling , S & Schneider , C 2016 , ' Room temperature Tamm-Plasmon exciton-polaritons with a WSe 2 monolayer ' , Nature Communications , vol. 7 , 13328 . https://doi.org/10.1038/ncomms13328en
dc.identifier.issn2041-1723
dc.identifier.otherPURE: 246059694
dc.identifier.otherPURE UUID: 6b2df0f6-c188-45e4-87f0-5dd9ef8b65fb
dc.identifier.otherScopus: 84994009765
dc.identifier.otherWOS: 000386514900001
dc.identifier.urihttps://hdl.handle.net/10023/9738
dc.descriptionThis work has been supported by the State of Bavaria. A.K. and S.H. acknowledge the partial financial support from the EPSRC Hybrid Polaritonics Programme. C.S. acknowledges financial support by the European Research Council (unLiMIt-2D project).en
dc.description.abstractSolid state cavity quantum electrodynamics is a rapidly advancing field which explores the frontiers of light-matter coupling. Metal-based approaches are of particular interest in this field, since they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. Transition metal dichalcogenides are ideally suited as the active material in cavity quantum electrodynamics as they interact strongly with light at the ultimate monolayer limit. Here, we implement a Tamm-plasmon-polariton structure, and study the coupling to a monolayer of WSe2, hosting highly stable excitons. Exciton-polariton formation at room temperature is manifested in the characteristic energy-momentum dispersion relation studied in photoluminescence, featuring an anti-crossing between the exciton and photon modes with a Rabi-splitting of 23.5 meV. Creating polaritonic quasi-particles in monolithic, compact architectures with atomic monolayers under ambient conditions is a crucial step towards the exploration of non-linearities, macroscopic coherence and advanced spinor physics with novel, low mass bosons.
dc.format.extent6
dc.language.isoeng
dc.relation.ispartofNature Communicationsen
dc.rightsCopyright the Author(s) 2016. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/en
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQCen
dc.titleRoom temperature Tamm-Plasmon exciton-polaritons with a WSe2 monolayeren
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doihttps://doi.org/10.1038/ncomms13328
dc.description.statusPeer revieweden
dc.date.embargoedUntil2016-10-31
dc.identifier.grantnumberEP/M025330/1en


This item appears in the following Collection(s)

Show simple item record