St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Lq -spectrum of planar self-affine measures

Thumbnail
View/Open
Fraser_2016_Affine_measures_TAMS_AAM.pdf (767.5Kb)
Date
2016
Author
Fraser, Jonathan M.
Keywords
Lq-spectrum
Self-affine measure
Modified singular value function
Hausdorff dimension
QA Mathematics
T-NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We study the dimension theory of a class of planar self-affine multifractal measures. These measures are the Bernoulli measures supported on box-like self-affine sets, introduced by the author, which are the attractors of iterated function systems consisting of contracting affine maps which take the unit square to rectangles with sides parallel to the axes. This class contains the self-affine measures recently considered by Feng and Wang as well as many other measures. In particular, we allow the defining maps to have non-trivial rotational and reflectional components. Assuming the rectangular open set condition, we compute the Lq-spectrum by means of a q-modified singular value function. A key application of our results is a closed form expression for the Lq-spectrum in the case where there are no mappings that switch the coordinate axes. This is useful for computational purposes and also allows us to prove differentiability of the Lq-spectrum at q=1 in the more difficult `non-multiplicative' situation. This has applications concerning the Hausdorff, packing and entropy dimension of the measure as well as the Hausdorff and packing dimension of the support. Due to the possible inclusion of axis reversing maps, we are led to extend some results of Peres and Solomyak on the existence of the Lq-spectrum of self-similar measures to the graph-directed case.
Citation
Fraser , J M 2016 , ' On the L q -spectrum of planar self-affine measures ' , Transactions of the American Mathematical Society , vol. 368 , no. 8 , pp. 5579-5620 . https://doi.org/10.1090/tran/6523
Publication
Transactions of the American Mathematical Society
Status
Peer reviewed
DOI
https://doi.org/10.1090/tran/6523
ISSN
0002-9947
Type
Journal article
Rights
© 2015, American Mathematical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at www.ams.org / https://doi.org/https://doi.org/10.1090/tran/6523
Description
The author was supported by the EPSRC grant EP/J013560/1. This work was started whilst the author was an EPSRC funded PhD student at the University of St Andrews, and he expresses his gratitude for the support he found there.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/9724

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter