On the Lq -spectrum of planar self-affine measures
Date
2016Author
Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We study the dimension theory of a class of planar self-affine multifractal measures. These measures are the Bernoulli measures supported on box-like self-affine sets, introduced by the author, which are the attractors of iterated function systems consisting of contracting affine maps which take the unit square to rectangles with sides parallel to the axes. This class contains the self-affine measures recently considered by Feng and Wang as well as many other measures. In particular, we allow the defining maps to have non-trivial rotational and reflectional components. Assuming the rectangular open set condition, we compute the Lq-spectrum by means of a q-modified singular value function. A key application of our results is a closed form expression for the Lq-spectrum in the case where there are no mappings that switch the coordinate axes. This is useful for computational purposes and also allows us to prove differentiability of the Lq-spectrum at q=1 in the more difficult `non-multiplicative' situation. This has applications concerning the Hausdorff, packing and entropy dimension of the measure as well as the Hausdorff and packing dimension of the support. Due to the possible inclusion of axis reversing maps, we are led to extend some results of Peres and Solomyak on the existence of the Lq-spectrum of self-similar measures to the graph-directed case.
Citation
Fraser , J M 2016 , ' On the L q -spectrum of planar self-affine measures ' , Transactions of the American Mathematical Society , vol. 368 , no. 8 , pp. 5579-5620 . https://doi.org/10.1090/tran/6523
Publication
Transactions of the American Mathematical Society
Status
Peer reviewed
ISSN
0002-9947Type
Journal article
Rights
© 2015, American Mathematical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at www.ams.org / https://doi.org/https://doi.org/10.1090/tran/6523
Description
The author was supported by the EPSRC grant EP/J013560/1. This work was started whilst the author was an EPSRC funded PhD student at the University of St Andrews, and he expresses his gratitude for the support he found there.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.