Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorGunar, Stanislav
dc.contributor.authorHeinzel, Petr
dc.contributor.authorMackay, Duncan Hendry
dc.contributor.authorAnzer, Ulrich
dc.date.accessioned2016-10-27T09:30:22Z
dc.date.available2016-10-27T09:30:22Z
dc.date.issued2016-12-20
dc.identifier.citationGunar , S , Heinzel , P , Mackay , D H & Anzer , U 2016 , ' Quiescent prominences in the era of ALMA : simulated observations using 3D whole-prominence fine structure model ' , Astrophysical Journal , vol. 833 , no. 2 , 141 . https://doi.org/10.3847/1538-4357/833/2/141en
dc.identifier.issn0004-637X
dc.identifier.otherPURE: 246928653
dc.identifier.otherPURE UUID: 13173027-749d-4786-a794-8d26fd847350
dc.identifier.otherScopus: 85007524768
dc.identifier.otherORCID: /0000-0001-6065-8531/work/58055427
dc.identifier.otherWOS: 000391169600016
dc.identifier.urihttp://hdl.handle.net/10023/9710
dc.description.abstractWe use the detailed 3D whole-prominence fine structure model to produce the first simulated high-resolution ALMA observations of a modeled quiescent solar prominence. The synthetic brightness temperature and optical thickness maps shown in the present paper are produced using a visualization method for the sub-millimeter/millimeter radio continua synthesis. We have obtained the simulated observations of both the prominence at the limb and the filament on the disk at wavelengths covering a broad range which encompasses the full potential of ALMA.We demonstrate here to what extent the small-scale and large-scale prominence and filament structures will be visible in the ALMA observations spanning both the optically thin and thick regimes. We analyze the relationship between the brightness and kinetic temperature of the prominence plasma. We also illustrate the opportunities ALMA will provide for studying the thermal structure of the prominence plasma from the cool prominence fine structure cores to the prominence-corona transition region. In addition, we show that the detailed 3D modeling of entire prominences with their numerous fine structures will be important for the correct interpretation of future ALMA prominence observations.
dc.format.extent11
dc.language.isoeng
dc.relation.ispartofAstrophysical Journalen
dc.rights© 2016, American Astronomical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at iopscience.iop.org / http://dx.doi.org/10.3847/1538-4357/833/2/141en
dc.subjectSun: filaments, prominencesen
dc.subjectSun: radio radiationen
dc.subjectRadiative transferen
dc.subjectMethods: numericalen
dc.subjectQB Astronomyen
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQBen
dc.subject.lccQCen
dc.titleQuiescent prominences in the era of ALMA : simulated observations using 3D whole-prominence fine structure modelen
dc.typeJournal articleen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews.Applied Mathematicsen
dc.identifier.doihttps://doi.org/10.3847/1538-4357/833/2/141
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record