St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structurally stable Mg-doped P2-Na2/3Mn1-yMgyO2 sodium-ion battery cathodes with high rate performance : insights from electrochemical, NMR and diffraction studies

Thumbnail
View/Open
Armstrong_2016_EES_BatteryCathodes_CC.pdf (4.255Mb)
Date
01/10/2016
Author
Clément, Raphaële
Billaud, Juliette
Armstrong, Robert
Singh, Gurpreet
Rojo, Teófilo
Bruce, Peter G.
Grey, Clare P.
Funder
EPSRC
Grant ID
EP/H019596/1
Keywords
QD Chemistry
NDAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Sodium-ion batteries are a more sustainable alternative to the existing lithium-ion technology and could alleviate some of the stress on the global lithium market as a result of the growing electric car and portable electronics industries. Fundamental research focused on understanding the structural and electronic processes occurring on electrochemical cycling is key to devising rechargeable batteries with improved performance. We present an in-depth investigation of the effect of Mg doping on the electrochemical performance and structural stability of Na2/3MnO2 with a P2 layer stacking by comparing three compositions: Na2/3Mn1-yMgyO2 (y = 0.0, 0.05, 0.1). We show that Mg substitution leads to smoother electrochemistry, with fewer distinct electrochemical processes, improved rate performance and better capacity retention. These observations are attributed to the more gradual structural changes upon charge and discharge, as observed with synchrotron, powder X-ray, and neutron diffraction. Mg doping reduces the number of Mn3+ Jahn-Teller centers and delays the high voltage phase transition occurring in P2-Na2/3MnO2. The local structure is investigated using 23Na solid-state nuclear magnetic resonance (ssNMR) spectroscopy. The ssNMR data provide direct evidence for fewer oxygen layer shearing events, leading to a stabilized P2 phase, and an enhanced Na-ion mobility up to 3.8 V vs. Na+/Na upon Mg doping. The 5% Mg-doped phase exhibits one of the best rate performances reported to date for sodium-ion cathodes with a P2 structure, with a reversible capacity of 106 mAhg-1 at the very high discharge rate of 5000 mAg-1. In addition, its structure is highly reversible and stable cycling is obtained between 1.5 and 4.0 V vs. Na+/Na, with a capacity of approximately 140 mAhg-1 retained after 50 cycles at a rate of 1000 mAg-1.
Citation
Clément , R , Billaud , J , Armstrong , R , Singh , G , Rojo , T , Bruce , P G & Grey , C P 2016 , ' Structurally stable Mg-doped P2-Na 2/3 Mn 1- y Mg y O 2 sodium-ion battery cathodes with high rate performance : insights from electrochemical, NMR and diffraction studies ' , Energy & Environmental Science , vol. 9 , no. 10 , pp. 3240-3251 . https://doi.org/10.1039/C6EE01750A
Publication
Energy & Environmental Science
Status
Peer reviewed
DOI
https://doi.org/10.1039/C6EE01750A
ISSN
1754-5692
Type
Journal article
Rights
Copyright The Author(s). Open Access Article. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Description
This work was partially supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, under the Batteries for Advanced Transportation Technologies (BATT) Program subcontract #7057154 (R.J.C). C.P.G. and R.J.C. thank the EU ERC for an Advanced Fellowship for CPG. This work was partially supported by the LINABATT project from the Ministerio de Economía Competitividad under Contract No. ENE2013-44330-R (G.S. and T.R.). P.G.B. is grateful to the EPSRC, including the SUPREGEN programme, for financial support.
Collections
  • University of St Andrews Research
URL
http://www.rsc.org/suppdata/c6/ee/c6ee01750a/c6ee01750a1.pdf
URI
http://hdl.handle.net/10023/9708

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter