Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorPayler, Samuel J.
dc.contributor.authorBiddle, Jennifer F.
dc.contributor.authorCoates, Andrew J.
dc.contributor.authorCousins, Claire R.
dc.contributor.authorCross, Rachel E.
dc.contributor.authorCullen, David C.
dc.contributor.authorDowns, Michael T.
dc.contributor.authorDireito, Susana O. L.
dc.contributor.authorEdwards, Thomas
dc.contributor.authorGray, Amber L.
dc.contributor.authorGenis, Jac
dc.contributor.authorGunn, Matthew
dc.contributor.authorHansford, Graeme M.
dc.contributor.authorHarkness, Patrick
dc.contributor.authorHolt, John
dc.contributor.authorJosset, Jean-Luc
dc.contributor.authorLi, Xuan
dc.contributor.authorLees, David S.
dc.contributor.authorLim, Darlene S. S.
dc.contributor.authorMchugh, Melissa
dc.contributor.authorMcluckie, David
dc.contributor.authorMeehan, Emma
dc.contributor.authorPaling, Sean M.
dc.contributor.authorSouchon, Audrey
dc.contributor.authorYeoman, Louise
dc.contributor.authorCockell, Charles S.
dc.date.accessioned2016-10-20T23:33:52Z
dc.date.available2016-10-20T23:33:52Z
dc.date.issued2017-04
dc.identifier.citationPayler , S J , Biddle , J F , Coates , A J , Cousins , C R , Cross , R E , Cullen , D C , Downs , M T , Direito , S O L , Edwards , T , Gray , A L , Genis , J , Gunn , M , Hansford , G M , Harkness , P , Holt , J , Josset , J-L , Li , X , Lees , D S , Lim , D S S , Mchugh , M , Mcluckie , D , Meehan , E , Paling , S M , Souchon , A , Yeoman , L & Cockell , C S 2017 , ' Planetary science and exploration in the deep subsurface : results from the MINAR Program, Boulby Mine, UK ' , International Journal of Astrobiology , vol. 16 , no. 2 , pp. 114-129 . https://doi.org/10.1017/S1473550416000045en
dc.identifier.issn1473-5504
dc.identifier.otherPURE: 243626605
dc.identifier.otherPURE UUID: d916a0b3-8a95-4bff-8968-d7cfc3dc7e58
dc.identifier.otherScopus: 84973904196
dc.identifier.otherORCID: /0000-0002-3954-8079/work/60196595
dc.identifier.otherWOS: 000395489300002
dc.identifier.urihttps://hdl.handle.net/10023/9686
dc.descriptionThe authors would also like to acknowledge the funding provided by the STFC Impact Acceleration Fund. Claire R. Cousins is supported by a Royal Society of Edinburgh Research Fellowship. The development of the ExoMars PanCam, the AUPE2 system and the PanCam data processing pipeline has been supported by funding from the UK Space Agency (lead funding agency) and the European Community’s Seventh Framework Program.en
dc.description.abstractThe subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research – MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining.
dc.format.extent16
dc.language.isoeng
dc.relation.ispartofInternational Journal of Astrobiologyen
dc.rightsCopyright © Cambridge University Press 2016. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at http://dx.doi.org/10.1017/S1473550416000045en
dc.subjectAnalog researchen
dc.subjectDeep subsurfaceen
dc.subjectHabitabilityen
dc.subjectInstrument testingen
dc.subjectSpin-offen
dc.subjectQH301 Biologyen
dc.subjectQB Astronomyen
dc.subjectSpace and Planetary Scienceen
dc.subjectEcology, Evolution, Behavior and Systematicsen
dc.subjectPhysics and Astronomy (miscellaneous)en
dc.subjectEarth and Planetary Sciences (miscellaneous)en
dc.subjectNDASen
dc.subject.lccQH301en
dc.subject.lccQBen
dc.titlePlanetary science and exploration in the deep subsurface : results from the MINAR Program, Boulby Mine, UKen
dc.typeJournal articleen
dc.contributor.sponsorThe Royal Society of Edinburghen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews. Earth and Environmental Sciencesen
dc.identifier.doihttps://doi.org/10.1017/S1473550416000045
dc.description.statusPeer revieweden
dc.date.embargoedUntil2016-10-20
dc.identifier.grantnumberen


This item appears in the following Collection(s)

Show simple item record