St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The massive protostellar cluster NGC 6334I at 220 au resolution : discovery of further multiplicity, diversity and a hot multi-core

Thumbnail
View/Open
Brogan_2016_NGC6334I_APJ_AAM.pdf (817.9Kb)
Date
30/11/2016
Author
Brogan, C. L.
Hunter, T. R.
Cyganowski, C. J.
Chandler, C. J.
Friesen, R.
Indebetouw, R.
Keywords
Stars: formation
Infrared: stars
ISM: individual (NGC6334I)
Radio continuum: ISM
Submillimeter: ISM
QB Astronomy
QC Physics
NDAS
Metadata
Show full item record
Abstract
We present VLA and ALMA imaging of the deeply-embedded protostellar cluster NGC 6334I from 5 cm to 1.3 mm at angular resolutions as fine as 0.′′17 (220 au). The dominant hot core MM1 is resolved into seven components at 1.3 mm, clustered within a radius of 1000 au. Four of the components have brightness temperatures > 200 K, radii ∼ 300 au, minimum luminosities ∼ 104 L⊙, and must be centrally heated. We term this new phenomenon a "hot multi-core". Two of these objects also exhibit compact free-free emission at longer wavelengths, consistent with a hypercompact HII region (MM1B) and a jet (MM1D). The spatial kinematics of the water maser emission centered on MM1D are consistent with it being the origin of the highvelocity bipolar molecular outflow seen in CO. The close proximity of MM1B and MM1D (440 au) suggests a proto-binary or a transient bound system. Several components of MM1 exhibit steep millimeter SEDs indicative of either unusual dust spectral properties or time variability. In addition to resolving MM1 and the other hot core (MM2) into multiple components, we detect five new millimeter and two new centimeter sources. Water masers are detected for the first time toward MM4A, confirming its membership in the protocluster. With a 1.3 mm brightness temperature of 97 K coupled with a lack of thermal molecular line emission, MM4A appears to be a highly optically-thick 240 L⊙ dust core, possibly tracing a transient stage of massive protostellar evolution. The nature of the strongest water maser source CM2 remains unclear due to its combination of non-thermal radio continuum and lack of dust emission.
Citation
Brogan , C L , Hunter , T R , Cyganowski , C J , Chandler , C J , Friesen , R & Indebetouw , R 2016 , ' The massive protostellar cluster NGC 6334I at 220 au resolution : discovery of further multiplicity, diversity and a hot multi-core ' , Astrophysical Journal , vol. 832 , no. 2 , 187 . https://doi.org/10.3847/0004-637X/832/2/187
Publication
Astrophysical Journal
Status
Peer reviewed
DOI
https://doi.org/10.3847/0004-637X/832/2/187
ISSN
0004-637X
Type
Journal article
Rights
© 2016, American Astronomical Society. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at iopscience.iop.org / https://dx.doi.org/10.3847/0004-637X/832/2/187
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/9644

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter