Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorCroal, Callum
dc.contributor.authorPeuntinger, Christian
dc.contributor.authorHeim, Bettina
dc.contributor.authorKhan, Imran
dc.contributor.authorMarquardt, Christoph
dc.contributor.authorLeuchs, Gerd
dc.contributor.authorWallden, Petros
dc.contributor.authorAndersson, Erika
dc.contributor.authorKorolkova, Natalia
dc.date.accessioned2016-10-07T15:30:13Z
dc.date.available2016-10-07T15:30:13Z
dc.date.issued2016-09-02
dc.identifier.citationCroal , C , Peuntinger , C , Heim , B , Khan , I , Marquardt , C , Leuchs , G , Wallden , P , Andersson , E & Korolkova , N 2016 , ' Free-space quantum signatures using heterodyne measurements ' Physical Review Letters , vol. 117 , no. 10 , 100503 . https://doi.org/10.1103/PhysRevLett.117.100503en
dc.identifier.issn0031-9007
dc.identifier.otherPURE: 246572907
dc.identifier.otherPURE UUID: 9e7f2277-b2e3-421c-8fdb-b60ec58ab48e
dc.identifier.otherScopus: 84988805229
dc.identifier.urihttp://hdl.handle.net/10023/9627
dc.descriptionC. C. and N. K. acknowledge the support from the Scottish Universities Physics Alliance (SUPA) and the Engineering and Physical Sciences Research Council (EPSRC). The project was supported within the framework of the International Max Planck Partnership (IMPP) with Scottish Universities. E. A. acknowledges the support of EPSRC EP/M013472/1.en
dc.description.abstractDigital signatures guarantee the authorship of electronic communications. Currently used "classical" signature schemes rely on unproven computational assumptions for security, while quantum signatures rely only on the laws of quantum mechanics to sign a classical message. Previous quantum signature schemes have used unambiguous quantum measurements. Such measurements, however, sometimes give no result, reducing the efficiency of the protocol. Here, we instead use heterodyne detection, which always gives a result, although there is always some uncertainty. We experimentally demonstrate feasibility in a real environment by distributing signature states through a noisy 1.6 km free-space channel. Our results show that continuous-variable heterodyne detection improves the signature rate for this type of scheme and therefore represents an interesting direction in the search for practical quantum signature schemes. For transmission values ranging from 100% to 10%, but otherwise assuming an ideal implementation with no other imperfections, the signature length is shorter by a factor of 2 to 10. As compared with previous relevant experimental realizations, the signature length in this implementation is several orders of magnitude shorter.
dc.format.extent5
dc.language.isoeng
dc.relation.ispartofPhysical Review Lettersen
dc.rights© 2016 American Physical Society. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at: https://dx.doi.org/10.1103/PhysRevLett.117.100503en
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQCen
dc.titleFree-space quantum signatures using heterodyne measurementsen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews.School of Physics and Astronomyen
dc.identifier.doihttps://doi.org/10.1103/PhysRevLett.117.100503
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record