St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Three-dimensional camouflage : exploiting photons to conceal form

Thumbnail
View/Open
Penacchio_AmericanNaturalist_682570_final.pdf (1.773Mb)
Date
10/2015
Author
Penacchio, Olivier
Lovell, P. George
Cuthill, Innes
Ruxton, Graeme Douglas
Harris, Julie
Funder
BBSRC
BBSRC
Grant ID
BB/J000272/1
BB/J000337/1
Keywords
Countershading
Background matching
Obliterative shading
Camouflage
Shape-from-shading
QH301 Biology
RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry
DAS
BDC
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Many animals have a gradation of body color, termed countershading, where the areas that are typically exposed to more light are darker. One hypothesis is that this patterning enhances visual camouflage by making the retinal image of the animal match that of the background, a fundamentally two-dimensional (2D) theory. More controversially, countershading may also obliterate cues to three-dimensional (3D) shape delivered by shading. Despite relying on distinct cognitive mechanisms, these two potential functions hitherto have been amalgamated in the literature. It has previously not been possible to validate either hypothesis empirically, because there has been no general theory of optimal countershading that allows quantitative predictions to be made about the many environmental parameters involved. Here we unpack the logical distinction between using countershading for background matching or obliterating 3D shape. We use computational modeling to determine the optimal coloration for the camouflage of 3D shape. Our model of 3D concealment is derived from the physics of light and informed by perceptual psychology: we simulate a 3D world that incorporates naturalistic lighting environments. The 49 model allows us to predict countershading coloration for terrestrial environments, for any body shape and a wide range of ecologically relevant parameters. The approach can be generalized to any light distribution, including those underwater.
Citation
Penacchio , O , Lovell , P G , Cuthill , I , Ruxton , G D & Harris , J 2015 , ' Three-dimensional camouflage : exploiting photons to conceal form ' , American Naturalist , vol. 186 , no. 4 , pp. 553-563 . https://doi.org/10.1086/682570
Publication
American Naturalist
Status
Peer reviewed
DOI
https://doi.org/10.1086/682570
ISSN
0003-0147
Type
Journal article
Rights
Copyright © 2015 by The University of Chicago. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work which was originally published at http://www.jstor.org/stable/10.1086/682570
Description
This research was supported by the Biotechnology and Biological Sciences Research Council of the United Kingdom, grants BB/J000272/1 to J.M.H. and P.G.L., BB/J002372/ to I.C.C., and BB/J000337/1 to G.D.R.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/9585

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter