Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorClaire, Mark W.
dc.contributor.authorSheets, John
dc.contributor.authorCohen, Martin
dc.contributor.authorRibas, Ignasi
dc.contributor.authorMeadows, Victoria S.
dc.contributor.authorCatling, David C.
dc.date.accessioned2016-09-26T10:30:10Z
dc.date.available2016-09-26T10:30:10Z
dc.date.issued2012-09-06
dc.identifier.citationClaire , M W , Sheets , J , Cohen , M , Ribas , I , Meadows , V S & Catling , D C 2012 , ' The evolution of solar flux from 0.1 nm to 160 μm : quantitative estimates for planetary studies ' , Astrophysical Journal , vol. 757 , no. 1 . https://doi.org/10.1088/0004-637X/757/1/95en
dc.identifier.issn0004-637X
dc.identifier.otherPURE: 66186350
dc.identifier.otherPURE UUID: d906e082-0477-4b77-8f02-d4987b78b8b5
dc.identifier.otherRIS: urn:216CC2AFEC5C594EBE0250D05844767A
dc.identifier.otherWOS: 000309052800095
dc.identifier.otherScopus: 84866138978
dc.identifier.otherORCID: /0000-0001-9518-089X/work/34103252
dc.identifier.urihttps://hdl.handle.net/10023/9552
dc.description.abstractUnderstanding changes in the solar flux over geologic time is vital for understanding the evolution of planetary atmospheres because it affects atmospheric escape and chemistry, as well as climate. We describe a numerical parameterization for wavelength-dependent changes to the non-attenuated solar flux appropriate for most times and places in the solar system. We combine data from the Sun and solar analogs to estimate enhanced UV and X-ray fluxes for the young Sun and use standard solar models to estimate changing visible and infrared fluxes. The parameterization, a series of multipliers relative to the modern top of the atmosphere flux at Earth, is valid from 0.1 nm through the infrared, and from 0.6 Gyr through 6.7 Gyr, and is extended from the solar zero-age main sequence to 8.0 Gyr subject to additional uncertainties. The parameterization is applied to a representative modern day flux, providing quantitative estimates of the wavelength dependence of solar flux for paleodates relevant to the evolution of atmospheres in the solar system (or around other G-type stars). We validate the code by Monte Carlo analysis of uncertainties in stellar age and flux, and with comparisons to the solar proxies κ1 Cet and EK Dra. The model is applied to the computation of photolysis rates on the Archean Earth.
dc.language.isoeng
dc.relation.ispartofAstrophysical Journalen
dc.rights© 2012. The American Astronomical Society. All rights reserved. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at http://dx.doi.org/10.1088/0004-637X/757/1/95en
dc.subjectPlanets and satellites: atmospheresen
dc.subjectStars: solar-typeen
dc.subjectSun: evolutionen
dc.subjectSun: UV radiationen
dc.subjectQC Physicsen
dc.subjectQB Astronomyen
dc.subjectSDG 13 - Climate Actionen
dc.subject.lccQCen
dc.subject.lccQBen
dc.titleThe evolution of solar flux from 0.1 nm to 160 μm : quantitative estimates for planetary studiesen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. Earth and Environmental Sciencesen
dc.contributor.institutionUniversity of St Andrews. St Andrews Isotope Geochemistryen
dc.identifier.doihttps://doi.org/10.1088/0004-637X/757/1/95
dc.description.statusPeer revieweden
dc.identifier.urlhttp://depts.washington.edu/naivpl/content/models/solarfluxen


This item appears in the following Collection(s)

Show simple item record