St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards an autonomous decentralized orchestration system

Thumbnail
View/Open
CCPE.pdf (1010.Kb)
Date
10/08/2016
Author
Jaradat, Ward
Dearle, Alan
Barker, Adam
Keywords
Service-oriented architecture
Decentralized orchestration
Data-centric workflows
Partitioning
Network resource monitoring
Placement analysis
QA75 Electronic computers. Computer science
NDAS
BDC
R2C
Metadata
Show full item record
Abstract
Orchestrating workflows needed for modern scientific data analysis presents a significant research challenge: they are typically executed in a centralized manner such that all data pass through a single compute server known as the engine, which causes unnecessary network traffic that leads to a performance bottleneck. This paper presents a scalable decentralized orchestration system that relies on a functional, high‐level data coordination language for executing workflows. This system consists of distributed execution engines, each of which is responsible for executing part of the overall workflow. It exploits parallelism in the workflow by partitioning it into smaller sub‐workflows and determines the most appropriate engines to execute them using network resource monitoring and placement analysis. This permits the computation logic of the workflow to be moved towards the services providing the data, which improves the overall execution time. The system supports data‐driven execution that allows each sub‐workflow to be executed as soon as the data needed for its execution become available from other sources. Therefore, a scheduling mechanism is not required to manage the order in which the sub‐workflows are orchestrated. This paper provides an evaluation of the proposed system, which demonstrates that decentralized orchestration provides scalability over centralized orchestration.
Citation
Jaradat , W , Dearle , A & Barker , A 2016 , ' Towards an autonomous decentralized orchestration system ' , Concurrency and Computation : Practice and Experience , vol. 28 , no. 11 , pp. 3164-3179 . https://doi.org/10.1002/cpe.3655
Publication
Concurrency and Computation : Practice and Experience
Status
Peer reviewed
DOI
https://doi.org/10.1002/cpe.3655
ISSN
1532-0634
Type
Journal article
Rights
Copyright © 2015, John Wiley & Sons Ltd. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://dx.doi.org/10.1002/cpe.3655
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/9534

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter