Designing spin-channel geometries for entanglement distribution
View/ Open
Date
01/09/2016Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We investigate different geometries of spin-1/2 nitrogen impurity channels for distributing entanglement between pairs of remote nitrogen vacancy centers (NVs) in diamond. To go beyond the system size limits imposed by directly solving the master equation, we implement a matrix product operator method to describe the open system dynamics. In so doing, we provide an early demonstration of how the time-evolving block decimation algorithm can be used for answering a problem related to a real physical system that could not be accessed by other methods. For a fixed NV separation there is an interplay between incoherent impurity spin decay and coherent entanglement transfer: Long-transfer-time, few-spin systems experience strong dephasing that can be overcome by increasing the number of spins in the channel. We examine how missing spins and disorder in the coupling strengths affect the dynamics, finding that in some regimes a spin ladder is a more effective conduit for information than a single-spin chain.
Citation
Levi , E K , Kirton , P G & Lovett , B W 2016 , ' Designing spin-channel geometries for entanglement distribution ' , Physical Review. A, Atomic, molecular, and optical physics , vol. 94 , no. 3 , 032302 . https://doi.org/10.1103/PhysRevA.94.032302
Publication
Physical Review. A, Atomic, molecular, and optical physics
Status
Peer reviewed
ISSN
1050-2947Type
Journal article
Rights
© 2016, American Physical Society. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at journals.aps.org / https://dx.doi.org/10.1103/PhysRevA.94.032302
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.