St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Atomic-scale electronic structure of the cuprate d-symmetry form factor density wave state

Thumbnail
View/Open
Edkins_2016_NatPhys_AtomicScale_AAM.pdf (5.781Mb)
Date
02/2016
Author
Hamidian, M. H.
Edkins, Stephen David
Kim, Chung Koo
Davis, James C
Mackenzie, Andrew
Eisaki, H.
Uchida, S.
Lawler, M. J.
Kim, E.-A.
Sachdev, S.
Fujita, K.
Keywords
QC Physics
Physics and Astronomy(all)
DAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Research on high-temperature superconducting cuprates is at present focused on identifying the relationship between the classic ‘pseudogap’ phenomenon1,2 and the more recently investigated density wave state3,4,5,6,7,8,9,10,11,12,13. This state is generally characterized by a wavevector Q parallel to the planar Cu–O–Cu bonds4,5,6,7,8,9,10,11,12,13 along with a predominantly d-symmetry form factor14,15,16 (dFF-DW). To identify the microscopic mechanism giving rise to this state17,18,19,20,21,22,23,24,25,26,27,28,29, one must identify the momentum-space states contributing to the dFF-DW spectral weight, determine their particle–hole phase relationship about the Fermi energy, establish whether they exhibit a characteristic energy gap, and understand the evolution of all these phenomena throughout the phase diagram. Here we use energy-resolved sublattice visualization14 of electronic structure and reveal that the characteristic energy of the dFF-DW modulations is actually the ‘pseudogap’ energy Δ1. Moreover, we demonstrate that the dFF-DW modulations at E  =   −Δ1 (filled states) occur with relative phase π compared to those at E  =  Δ1 (empty states). Finally, we show that the conventionally defined dFF-DW Q corresponds to scattering between the ‘hot frontier’ regions of momentum-space beyond which Bogoliubov quasiparticles cease to exist30,31,32. These data indicate that the cuprate dFF-DW state involves particle–hole interactions focused at the pseudogap energy scale and between the four pairs of ‘hot frontier’ regions in momentum space where the pseudogap opens.
Citation
Hamidian , M H , Edkins , S D , Kim , C K , Davis , J C , Mackenzie , A , Eisaki , H , Uchida , S , Lawler , M J , Kim , E-A , Sachdev , S & Fujita , K 2016 , ' Atomic-scale electronic structure of the cuprate d -symmetry form factor density wave state ' , Nature Physics , vol. 12 , no. 2 , pp. 150-156 . https://doi.org/10.1038/nphys3519
Publication
Nature Physics
Status
Peer reviewed
DOI
https://doi.org/10.1038/nphys3519
ISSN
1745-2473
Type
Journal article
Rights
Copyright 2015 the Authors. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://dx.doi.org/10.1038/nphys3519
Description
Experimental studies were supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center, headquartered at Brookhaven National Laboratory and funded by the US Department of Energy under DE-2009-BNL-PM015, as well as by a Grant-in-Aid for Scientific Research from the Ministry of Science and Education (Japan) and the Global Centers of Excellence Program for Japan Society for the Promotion of Science. C.K.K. acknowledges support under the FlucTeam Program at Brookhaven National Laboratory (Contract DE-AC02-98CH10886). S.D.E., J.C.D. and A.P.M. acknowledge the support of EPSRC through the Programme Grant ‘Topological Protection and Non-Equilibrium States in Correlated Electron Systems’. Theoretical studies at Cornell University were supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award DE-SC0010313. Theoretical studies at Harvard University were supported by NSF Grant DMR-1103860 and by the Templeton Foundation. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/9355

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter