St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-wave coherent control of a solid-state single emitter

Thumbnail
View/Open
Hofling_2016_NP_Multi_AAM.pdf (992.9Kb)
Date
03/2016
Author
Fras, F.
Mermillod, Q.
Nogues, G.
Hoarau, C.
Schneider, C.
Kamp, M.
Höfling, Sven
Langbein, W.
Kasprzak, J.
Keywords
QC Physics
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Coherent control of individual two-level systems (TLSs) is at the basis of any implementation of quantum information. An impressive level of control is now achieved using nuclear, vacancies and charge spins. Manipulation of bright exciton transitions in semiconductor quantum dots (QDs) is less advanced, principally due to the sub-nanosecond dephasing. Conversely, owing to their robust coupling to light, one can apply tools of nonlinear spectroscopy to achieve all-optical command. Here, we report on the coherent manipulation of an exciton via multi-wave mixing. Specifically, we employ three resonant pulses driving a single InAs QD. The first two induce a four-wave mixing (FWM) transient, which is projected onto a six-wave mixing (SWM) depending on the delay and area of the third pulse, in agreement with analytical predictions. Such a switch enables to demonstrate the generation of SWM on a single emitter and to engineer the spectro-temporal shape of the coherent response originating from a TLS. These results pave the way toward multi-pulse manipulations of solid state qubits via implementing the NMR-like control schemes in the optical domain.
Citation
Fras , F , Mermillod , Q , Nogues , G , Hoarau , C , Schneider , C , Kamp , M , Höfling , S , Langbein , W & Kasprzak , J 2016 , ' Multi-wave coherent control of a solid-state single emitter ' , Nature Photonics , vol. 10 , pp. 155-158 . https://doi.org/10.1038/nphoton.2016.2
Publication
Nature Photonics
Status
Peer reviewed
DOI
https://doi.org/10.1038/nphoton.2016.2
ISSN
1749-4885
Type
Journal article
Rights
© 2016, the Authors. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://dx.doi.org/10.1038/nphoton.2016.2
Description
The authors acknowledge support by the European Research Council Starting Grant 'PICSEN' contract no. 306387.
Collections
  • University of St Andrews Research
URL
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2016.2.html#supplementary-information
URI
http://hdl.handle.net/10023/9308

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter