Files in this item
Idempotent rank in the endomorphism monoid of a non-uniform partition
Item metadata
dc.contributor.author | Dolinka, Igor | |
dc.contributor.author | East, James | |
dc.contributor.author | Mitchell, James D. | |
dc.date.accessioned | 2016-08-09T09:30:14Z | |
dc.date.available | 2016-08-09T09:30:14Z | |
dc.date.issued | 2016-02 | |
dc.identifier.citation | Dolinka , I , East , J & Mitchell , J D 2016 , ' Idempotent rank in the endomorphism monoid of a non-uniform partition ' , Bulletin of the Australian Mathematical Society , vol. 93 , no. 1 , pp. 73-91 . https://doi.org/10.1017/S0004972715000751 | en |
dc.identifier.issn | 0004-9727 | |
dc.identifier.other | PURE: 212674032 | |
dc.identifier.other | PURE UUID: bf8929c0-c2f4-4fe7-8415-287da4064d2b | |
dc.identifier.other | Scopus: 84938828148 | |
dc.identifier.other | ArXiv: http://arxiv.org/abs/1504.02520v1 | |
dc.identifier.other | WOS: 000367384000009 | |
dc.identifier.other | ORCID: /0000-0002-5489-1617/work/73700788 | |
dc.identifier.uri | http://hdl.handle.net/10023/9275 | |
dc.description.abstract | We calculate the rank and idempotent rank of the semigroup E(X,P) generated by the idempotents of the semigroup T(X,P), which consists of all transformations of the finite set X preserving a non-uniform partition P. We also classify and enumerate the idempotent generating sets of this minimal possible size. This extends results of the first two authors in the uniform case. | |
dc.language.iso | eng | |
dc.relation.ispartof | Bulletin of the Australian Mathematical Society | en |
dc.rights | © 2016, Publisher / the Author(s). This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at journals.cambridge.org / https://dx.doi.org/10.1017/S0004972715000751 | en |
dc.subject | Transformation semigroups | en |
dc.subject | Idempotents | en |
dc.subject | Generators | en |
dc.subject | Rank | en |
dc.subject | Idempotent rank | en |
dc.subject | QA Mathematics | en |
dc.subject | T-NDAS | en |
dc.subject.lcc | QA | en |
dc.title | Idempotent rank in the endomorphism monoid of a non-uniform partition | en |
dc.type | Journal article | en |
dc.description.version | Postprint | en |
dc.contributor.institution | University of St Andrews. Pure Mathematics | en |
dc.contributor.institution | University of St Andrews. Centre for Interdisciplinary Research in Computational Algebra | en |
dc.identifier.doi | https://doi.org/10.1017/S0004972715000751 | |
dc.description.status | Peer reviewed | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.