St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Properties of the prominence magnetic field and plasma distributions as obtained from 3D whole-prominence fine structure modeling

Thumbnail
View/Open
Gunar_2016_Properties_AA_A60.pdf (6.879Mb)
Date
08/2016
Author
Gunar, Stanislav
Mackay, Duncan Hendry
Funder
Science & Technology Facilities Council
The Leverhulme Trust
Grant ID
ST/N000609/1
RPG-305
Keywords
Sun: filaments, prominences
Sun: magnetic fields
Plasmas
Methods: numerical
QB Astronomy
QC Physics
NDAS
Metadata
Show full item record
Abstract
Aims. We analyze distributions of the magnetic field strength and prominence plasma (temperature, pressure, plasma beta, and mass) using the 3D whole-prominence fine structure model. Methods. The model combines a 3D magnetic field configuration of an entire prominence, obtained from non-linear force-free field simulations, with a detailed semi-empirically derived description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Results. We show that in the modeled prominence, the variations of the magnetic field strength and its orientation are insignificant on scales comparable to the smallest dimensions of the observed prominence fine structures. We also show the ability of the 3D whole-prominence fine structure model to reveal the distribution of the prominence plasma, with respect to its temperature within the prominence volume. This provides new insights into the composition of the prominence-corona transition region. We further demonstrate that the values of the plasma beta are small throughout the majority of the modeled prominence when realistic photospheric magnetic flux distributions and prominence plasma parameters are assumed. While this is generally true, we also find that in the region with the deepest magnetic dips, the plasma beta may increase towards unity. Finally, we show that the mass of the modeled prominence plasma is in good agreement with the mass of observed non-eruptive prominences.
Citation
Gunar , S & Mackay , D H 2016 , ' Properties of the prominence magnetic field and plasma distributions as obtained from 3D whole-prominence fine structure modeling ' , Astronomy & Astrophysics , vol. 592 , A60 . https://doi.org/10.1051/0004-6361/201527704
Publication
Astronomy & Astrophysics
Status
Peer reviewed
DOI
https://doi.org/10.1051/0004-6361/201527704
ISSN
0004-6361
Type
Journal article
Rights
© 2016, ESO. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at www.aanda.org / https://dx.doi.org/10.1051/0004-6361/201527704
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/9203

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter