Files in this item
Hitting times and periodicity in random dynamics
Item metadata
dc.contributor.author | Todd, Michael John | |
dc.contributor.author | Rousseau, Jerome | |
dc.date.accessioned | 2016-07-20T23:31:01Z | |
dc.date.available | 2016-07-20T23:31:01Z | |
dc.date.issued | 2015-10 | |
dc.identifier.citation | Todd , M J & Rousseau , J 2015 , ' Hitting times and periodicity in random dynamics ' , Journal of Statistical Physics , vol. 161 , no. 1 , pp. 131-150 . https://doi.org/10.1007/s10955-015-1325-7 | en |
dc.identifier.issn | 0022-4715 | |
dc.identifier.other | PURE: 141612817 | |
dc.identifier.other | PURE UUID: 23980bde-6e57-4bf2-a6e3-5669990cb0dc | |
dc.identifier.other | Scopus: 84940891539 | |
dc.identifier.other | ORCID: /0000-0002-0042-0713/work/54181503 | |
dc.identifier.other | WOS: 000360673100007 | |
dc.identifier.uri | http://hdl.handle.net/10023/9179 | |
dc.description.abstract | We prove quenched laws of hitting time statistics for random subshifts of finite type. In particular we prove a dichotomy between the law for periodic and for non-periodic points. We show that this applies to random Gibbs measures. | |
dc.format.extent | 20 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Statistical Physics | en |
dc.rights | © Springer Science+Business Media New York 2015. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://dx.doi.org/10.1007/s10955-015-1325-7 | en |
dc.subject | Hitting times | en |
dc.subject | Random dynamical systems | en |
dc.subject | Exponential law | en |
dc.subject | Extremal index | en |
dc.subject | QA Mathematics | en |
dc.subject | T-NDAS | en |
dc.subject.lcc | QA | en |
dc.title | Hitting times and periodicity in random dynamics | en |
dc.type | Journal article | en |
dc.contributor.sponsor | European Commission | en |
dc.description.version | Postprint | en |
dc.contributor.institution | University of St Andrews. Pure Mathematics | en |
dc.identifier.doi | https://doi.org/10.1007/s10955-015-1325-7 | |
dc.description.status | Peer reviewed | en |
dc.date.embargoedUntil | 2016-07-21 | |
dc.identifier.grantnumber | 318999 | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.