Automorphism groups of countable algebraically closed graphs and endomorphisms of the random graph
Abstract
We establish links between countable algebraically closed graphs and the endomorphisms of the countable universal graph R. As a consequence we show that, for any countable graph Γ, there are uncountably many maximal subgroups of the endomorphism monoid of R isomorphic to the automorphism group of Γ. Further structural information about End R is established including that Aut Γ arises in uncountably many ways as a Schützenberger group. Similar results are proved for the countable universal directed graph and the countable universal bipartite graph.
Citation
Dolinka , I , Gray , R D , McPhee , J D , Mitchell , J D & Quick , M 2016 , ' Automorphism groups of countable algebraically closed graphs and endomorphisms of the random graph ' , Mathematical Proceedings of the Cambridge Philosophical Society , vol. 160 , no. 3 , pp. 437-462 . https://doi.org/10.1017/S030500411500078X
Publication
Mathematical Proceedings of the Cambridge Philosophical Society
Status
Peer reviewed
ISSN
0305-0041Type
Journal article
Rights
© 2016, Publisher / the Author(s). This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at journals.cambridge.org / https://dx.doi.org/10.1017/S030500411500078X
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Related items
Showing items related by title, author, creator and subject.
-
Endomorphisms of Fraïssé limits and automorphism groups of algebraically closed relational structures
McPhee, Jillian Dawn (University of St Andrews, 2012-11-30) - ThesisLet Ω be the Fraïssé limit of a class of relational structures. We seek to answer the following semigroup theoretic question about Ω. What are the group H-classes, i.e. the maximal subgroups, of End(Ω)? Fraïssé limits for ... -
Improving visual representations of code
Burd, Liz; Chan, P.S.; Duncan, Ishbel Mary Macdonald; Munro, Malcolm; Young, Peter (Durham University, 1997) - Working or discussion paperThe contents of this paper describe the work carried out by the Visual Research Group in the Centre for Software Maintenance at the University of Durham. -
Commutativity and free products in Thompson's group V
Bieniecka, Ewa (University of St Andrews, 2018-06-26) - ThesisWe broaden the theory of dynamical interpretation, investigate the property of commutativity and explore the subject of subgroups forming free products in Thompson's group V. We expand Brin's terminology for a revealing ...