St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

On regularity and the word problem for free idempotent generated semigroups

Thumbnail
View/Open
Dolinka_2016_Regularity_PLMS_AAM.pdf (448.2Kb)
Date
03/03/2017
Author
Dolinka, Igor
Gray, Robert D.
Ruskuc, Nikola
Funder
EPSRC
EPSRC
Grant ID
EP/H011978/1
EP/I032282/1
Keywords
QA Mathematics
T-NDAS
BDC
R2C
Metadata
Show full item record
Abstract
The category of all idempotent generated semigroups with a prescribed structure Ɛ of their idempotents E (called the biordered set) has an initial object called the free idempotent generated semigroup over Ɛ, defined by a presentation over alphabet E, and denoted by IG(Ɛ). Recently, much effort has been put into investigating the structure of semigroups of the form IG(Ɛ), especially regarding their maximal subgroups. In this paper, we take these investigations in a new direction by considering the word problem for IG(Ɛ). We prove two principal results, one positive and one negative. We show that, for a finite biordered set E, it is decidable whether a given word w ∈ E∗ represents a regular element; if in addition one assumes that all maximal subgroups of IG(Ɛ) have decidable word problems, then the word problem in IG(Ɛ) restricted to regular words is decidable. On the other hand, we exhibit a biorder Ɛ arising from a finite idempotent semigroup S, such that the word problem for IG(Ɛ) is undecidable, even though all the maximal subgroups have decidable word problems. This is achieved by relating the word problem of IG(Ɛ) to the subgroup membership problem in infinitely presented groups.
Citation
Dolinka , I , Gray , R D & Ruskuc , N 2017 , ' On regularity and the word problem for free idempotent generated semigroups ' , Proceedings of the London Mathematical Society , vol. 114 , no. 3 , pp. 401-432 . https://doi.org/10.1112/plms.12011
Publication
Proceedings of the London Mathematical Society
Status
Peer reviewed
DOI
https://doi.org/10.1112/plms.12011
ISSN
0024-6115
Type
Journal article
Rights
© 2016, London Mathematical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at plms.oxfordjournals.org / https://dx.doi.org/10.1112/plms.12011
Description
The research of the first author was supported by the Ministry of Education, Science, and Technological Development of the Republic of Serbia through the grant No. 174019, and by the grant No. 0851/2015 of the Secretariat of Science and Technological Development of the Autonomous Province of Vojvodina. The research of the second author was partially supported by the EPSRC-funded project EP/N033353/1 ‘Special inverse monoids: subgroups, structure, geometry, rewriting systems and the word problem’. The research of the third author was supported by the EPSRC-funded project EP/H011978/1 ‘Automata, Languages, Decidability in Algebra’.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/9145

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter