St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Novel application of a quantitative spatial comparison tool to species distribution data

Thumbnail
View/Open
Jones_2016_EI_DistibutionData_CC.pdf (2.525Mb)
Date
11/2016
Author
Jones, Esther Lane
Rendell, Luke Edward
Pirotta, Enrico
Long, Jed A.
Funder
NERC
Grant ID
Keywords
Edge effects
Map comparisons
Moving window
Sperm whale
SSIM index
Uncertainty
GC Oceanography
QH301 Biology
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Comparing geographically referenced maps has become an important aspect of spatial ecology (e.g. assessing change in distribution over time). Whilst humans are adept at recognising and extracting structure from maps (i.e. identifying spatial patterns), quantifying these structures can be difficult. Here, we show how the Structural Similarity (SSIM) index, a spatial comparison method adapted from techniques developed in computer science to determine the quality of image compression, can be used to extract additional information from spatial ecological data. We enhance the SSIM index to incorporate uncertainty from the underlyin g spatial models, and provide a software algorithm to correct for internal edge effects so that loss of spatial information from the map comparison is limited. The SSIM index uses a spatially-local window to calculate statistics based on local mean, variance, and covariance between the maps being compared. A number of statistics can be calculated using the SSIM index, ranging from a single summary statistic to quantify similarities between two maps, to maps of similarities in mean, variance, and covariance that can provide additional insight into underlying biological processes. We demonstrate the applicability of the SSIM approach using a case study of sperm whales in the Mediterranean Sea and identify areas where local-scale differences in space-use between groups and singleton whales occur. We show how novel insights into spatial structure can be extracted, which could not be obtained by visual inspection or cell-by-cell subtraction. As an approach, SSIM is applicable to a broad range of spatial ecological data, providing a novel, implementable tool for map comparison.
Citation
Jones , E L , Rendell , L E , Pirotta , E & Long , J A 2016 , ' Novel application of a quantitative spatial comparison tool to species distribution data ' , Ecological Indicators , vol. 70 , pp. 67-76 . https://doi.org/10.1016/j.ecolind.2016.05.051
Publication
Ecological Indicators
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.ecolind.2016.05.051
ISSN
1470-160X
Type
Journal article
Rights
© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).
Description
E.L.J. was funded under Scottish Government grant MMSS001/11. Sperm whale data were collected with support from One World Wildlife, the Natural Environment Research Council (NER/I/S/2002/00632), Whale and Dolphin Conservation (WDC), and J.M. Brotons of the Balearic Government Office of Fisheries Management. L.R. was supported by the MASTS pooling initiative, funded by the Scottish Funding Council (HR09011) and contributing institutions and their support are gratefully acknowledged.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/8985

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter