St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Linking collisional and accretionary orogens during Rodinia assembly and breakup : implications for models of supercontinent cycles

Thumbnail
View/Open
Cawood_2016_E_PSL_Rodinia_CC.pdf (1.083Mb)
Date
01/09/2016
Author
Cawood, Peter Anthony
Strachan, Robin A.
Pisarevsky, Sergei A.
Gladkochub, Dmitry P.
Murphy, J. Brendan
Funder
NERC
Grant ID
NE/J021822/1
Keywords
Rodinia
Supercontinent
Top down
Bottom up
Neoproterozoic
GE Environmental Sciences
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Periodic assembly and dispersal of continental fragments has been a characteristic of the solid Earth for much of its history. Geodynamic drivers of this cyclic activity are inferred to be either top-down processes related to near surface lithospheric stresses at plate boundaries or bottom-up processes related to mantle convection and, in particular, mantle plumes, or some combination of the two. Analysis of the geological history of Rodinian crustal blocks suggests that internal rifting and breakup of the supercontinent were linked to the initiation of subduction and development of accretionary orogens around its periphery. Thus, breakup was a top-down instigated process. The locus of convergence was initially around north-eastern and northern Laurentia in the early Neoproterozoic before extending to outboard of Amazonia and Africa, including Avalonia–Cadomia, and arcs outboard of Siberia and eastern to northern Baltica in the mid-Neoproterozoic (∼760 Ma). The duration of subduction around the periphery of Rodinia coincides with the interval of lithospheric extension within the supercontinent, including the opening of the proto-Pacific at ca. 760 Ma and the commencement of rifting in east Laurentia. Final development of passive margin successions around Laurentia, Baltica and Siberia was not completed until the late Neoproterozoic to early Paleozoic (ca. 570–530 Ma), which corresponds with the termination of convergent plate interactions that gave rise to Gondwana and the consequent relocation of subduction zones to the periphery of this supercontinent. The temporal link between external subduction and internal extension suggests that breakup was initiated by a top-down process driven by accretionary tectonics along the periphery of the supercontinent. Plume-related magmatism may be present at specific times and in specific places during breakup but is not the prime driving force. Comparison of the Rodinia record of continental assembly and dispersal with that for Nuna, Gondwana and Pangea suggests grouping into two supercycles in which Nuna and Gondwana underwent only partial or no break-up phase prior to their incorporation into Rodinia and Pangea respectively. It was only after this final phase of assembly that the supercontinents then underwent full dispersal.
Citation
Cawood , P A , Strachan , R A , Pisarevsky , S A , Gladkochub , D P & Murphy , J B 2016 , ' Linking collisional and accretionary orogens during Rodinia assembly and breakup : implications for models of supercontinent cycles ' , Earth and Planetary Science Letters , vol. 449 , pp. 118-126 . https://doi.org/10.1016/j.epsl.2016.05.049
Publication
Earth and Planetary Science Letters
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.epsl.2016.05.049
ISSN
0012-821X
Type
Journal article
Rights
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Description
We acknowledge support from our respective funding agencies (NERC grant NE/J021822/1, and NSERC Canada).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/8956

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter